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PART I: STATEMENT OF THE PROBLEM AND SOLUTION _QUE

1. INTRODUCTION

l.I. Background

The distinct feature of a Stifling engine as compared to most other power producing

devices is its abili_' to be driven by virmxlly any heat somce such u solar energy or

combustable refuse, among others. This leads to a number of promising applications: The

Sm'ling engine as a prospective power source for future rpace missions or as the rice husk

drivenmotor foragriculturalmachinery. Inaddition,a SRrlingengine issilent,has lob

emission levelsifpowered by a combustion processand isenergy efficient.

A cruciaJ point for further development of StiJ'ling engines is the optimization of its heat

exchangers which operateunder oscillatoryflow conditions.Heat exchanger optimization

depends on theabilib,toaccuratelysimulatethefluidflow and hem u'ansfcrbehavior.Ithas

been found thal themost importantthermodynamic uncertaintiesin theStiflingengine

designsforspace power areintheheatu'znsferbe_,een gas and rne_ inallengine

components and inthe pressuredrop acrossthe heatexchanger components. So far,

performance codes cannotpredictthepower outputof a SRrlingenginereasonablyenough

ifused fora wide varietyof engines.Thus, thereisa su'ongneed forbetterperformance

codes.However, a performance code isusuallynot concerned with thedetailsof theflov,.

This informationmusl be provided externally.While forlaminaroscillatingflow analytical

relationshipsexisl,therehas been hardJyany informationabout u-a.nsitionaland turbulem

oscillating flov, _.'hich could be introduced into the performance codes.



In 1986a survey by Seume and Simon (1980a) revealed that most Sibling engine heat

exchangers operate in the mmsitional and turbulent mgin_. C..omeque.ndy, research has

since focussed on the ann=solved issue of transitional and tu0rbulent oscilhuing flow and

heat o'ansfer. Since 1988, the University of Minnewta oscillating flow ust facility has

obtained experimental clara abou_ u'ansitional mid turbulem os_afing flow. Howcve3", since

the experiments in this field are extremely difficult, lengthy and expensive, it will

advantageous to nuraericadJy simulate the flow and heat mm_'er accunttely from first

principles. With a simulation program, one can enhance the undemanding of the oscillating

flow phenomena in general. Also, a simulation program is useful in guiding the experiment

in some areas. Once tested for its validity, many more operating points can be "probed"

with such a simulation program than with any experimental set-up. Finally, this program

can generate the input data nee..ded for a performance code, as mentioned above.

It is the purpose of this research to contribute to the development of a realistic

simulation program, thereby adding to the basic knowledge and understanding of turbulent

oscillating flow and heat o'ansfer and to the further the development of Stifling engines.

1.2. Literature Survey of Oscillating Flow Research

1.2.1. Scope and limitations of this Survey

The objective of this survey is to answer the following questions:

On oscillator)' pipe flow ....

a) ... what experimental data is available?

b) ... what numerical results are reported and how do they compare with

experiments and theor)'?

c) ... what are the open questions for numerical analysis in this field?



Currentlythereisno consensusin the literatureabout thenon_nclalum of periodic

unsteadyflows.Expressionslikepulsating,pulsatile,oscillatingor oscillalncyareused

synonymously. In thiswork, we arcprimarilyconcerned withinfortm_on about

periodica]Jyreversingflow with zeromean velocity.In thefollowing,we shallde=no= this

situation by "oscillatory" or "oscillating" flow only. The expressions "pulsatile" or

"pulsating" flow will be used for flow situations with a net mean velocity.

Fully developed laminar pulsafile flow can be expecl_ m bc a superposifion of a s_ady

mean flow and an oscillatory flow, since the equation of motion b linear in that special

case.For an entrylengthsituationand/oru-ansitionalor turbulentflow,thisisno longer

trueand oscillatoryflow has tobe u'eatedseparatelyfrom pulsatilefow. Moreover, some

anaJyticalsolutionsforpulsatileflow have singularitiesforzeromean velocity.Yet, resulm

forpulsafileflow can possiblybe taken asqualitativelyrepresentativeforoscillatoryflow.

For instancethe questionwhether theturbulencestructurein an unsteadyflow isdifferent

from thatinstead)'flow can be discussedv,,ithknow}edge about pulsati]eflow.The

major'itTof publica_onsdealwithpulsatileflow,and theseresultsarcincludedin this

survey,bu_ listedand describeddistinctfrom thoseforoscillator)'flow. Similarly,

althoughour focus ison internalpipeflow,othergeometriesinvestigatedcould bca

valuablequalitativesourceof informationand arethereforeincluded.From a numerical

pointof view,turbulencemodels forgeneralunsteadysituationsmay be of great

importance and arcthereforeincluded,too.

This literaturesurveyextendsand updatestheexcellentreview of Seun_ aad Simon

(]980o) for the fluid flow problem. Since it is assumed that fluid flow is the underlying

problem, this review does not include information about heat u-ansfer. Once the fluid flog

is understood, the heat u'ansfer can be inferred.



1.2.2. Laminar Flow

1.2.2.1. Fully Developed Flow

From the iitcrann'e surveyed it is clear thin fully developed oscillatm'y and pulsadle

laminar flow an= well understood. Since the Navier-Stokes zquafions for this special case

are linear, a pulsating velocity can be split into a stcsdy me2m component sad an oscillating

component. However, a distinction between oscillatory and pulsadle flow is necessary in

the case of an entry length problem.

Straight Geornen'ies

The osculating flow effect was experimentally discovered for laminar oscillating flow

conditions by Richardson and Tyler (1929), when they found the velocity distribution near

the mouth of a pipe different than the steady state profile, i.e. the maximum velocit3' was

located near the pipe walls and not in the center. Sexl (1930) was able to predict this

behavior for sinusoidal motion in a pipe. Following are a number of analyses and

experiments performed to stud)' the flow panem, pressure drop and friction factor for

different geometries as well as for bent circular pipes:

Anal.vses.Wommersle)" (1955) and Uchida (1956) calculatedthe velocitiesof laminar

pulsatileflov,ina sn'aightpipe fornon-sinusoidalmotions of thefluid.The Uchida

analysisisstillthemost prominent analysisforlaminarflow.Drake (1965)and Gedeon

(I986) analyzedthe flow panem ofoscillatingflows inrectangularchannelsof finiteand

infinitewidth.Drake alsoderiveda solutionfortheskinfriction.Vosse (1986) nv,ated

osciLlatoryflow inaflatplatechannelnumericallywitha finiteelement method. Employing

a one-dimensionalanalysisand the well-known steadystatefrictionfactor,.loaes(1983)

gave an anaJyticalsolutionforthe instantaneouspressuredrop inoscillatoryflow.For

pulsatileriot,Trikho(1975)obtainedthetimedependent frictionfactorby a Laplace

transformsolution.Ohmi etal.(1981b,c)gave instantaneousand time averaged valuesfor

4



friction factor and pressure drop in a pipe and found behavior qualitatively similar to

turbulent flow. Chen and Grin (19831 stated that the pressun_ loss in oscillmory flow is

considerably larger than in sw.ady flow. For general unsmady motion, CI, wmbre and

Schrock (2978)derivedan analyticalsolutionforfullydeveloped laminarpipe flow.Igucbi

etal.(1985a) obtaineda dinedependentrep_sentationof thewallshearsue_ been the

integral momentum and enerKy equations. Unsteady boundary layers w_e _.ated in de.A_

e.g. by Telionis (1975). Cebeci (1986) describes an imelfigem numerical scheme for

unsteady boundary layers with large flow reversals.

Experiments. Studies of oscillatory flow in a su'xight pipe are rcpone.d by Shizsal

al. (1965), while Edwards and Willa'nson (19711 did the pulsatile flow case. Their results

show good agreement with the Uchida analysis. Valensi (19471 performed experiments of

a liquid in a U-shaped tube with free oscillations, while forced oscillations were

investigated by Chan andBaird (I9741. Oscillatory flow in tapered channels was studied

experimentally and analytically by Gaver (19861, who found that the results differed

substantially from those in a s_aight channel. Similar results were presented by Ik.e.o and

Uzawa (19861, who investigated the oscillatory flow pattern in an convergent tube

numericall.v and experimentally. Duck (19851 solved the flow pattern ofa pulsatile flog' in

a nonuniform channel numerically and found that above a critical amplitude of oscillation, a

failure of the bounda. D' layer equations ocured.

F]o_ in Cu_'ed Ducts

The flo_ pattern of laminar pulsatile flow in bent circular pipes of various cross

sections was studied experimentally by Chandran et al. (19741. That of oscillating flow

was investigated numerical])' and experimentally by Sudou et al. (19851. Chandran et

al.(19741 found that the maximum velocity was shifted towards the center of cur'¢ature

compared to stead>' flow. Sudou et al. 0985) found good agreement of experiment and

predictSon. A study by Sumidn and Sudou (1986b) for pulsatile flow used laser-doppler

anemomew,, to measure the axild velocity in a curved pipe. They reported good agreement
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with their numerical predictions. Telionis (7987) gave _nillrity pmammm's for

nondirnensiorud u'eaument of pulsmile flow in ¢xu'ved pipes. Takami (1984) •tam'mined the

pressure drop in puluuile curved-pipe flow by • lime-dependent nmnm'i_ analysis and by

in approximation mm]xxl _ found Iood qp,nement. The wall slhar smms in eL-•riming

flow as • function of radius of curvature was calculauxl by Sun•d• and $udou (1985).

Yam•he et al. (198J) found an increase of wall shear su'ess compm_ m • might pipe

under identical conditions. Finally, Sum/d• an•' Sudou (]986a) determined the pressure

drop of an oscillating fluid in • curved pipe by experiment and analysis.

1.2.2.2. Enu'y Length Conditions

Oscillatory_ F'low in Su-aightGeometries

The first investigation of this kind was reported by Disselhorst and Wijngaarden

(1980), who studied _paration near the entrance of • tube under acoustic resonance.

Thereafter separation only occurs for small and moderate Strouhal numbers. Peacock and

5tairman (1983) predicted the entry length shorter than in steady state conditions.

However, Seume and Simon (1986a) argued that experiments do not support this

hypothesis. Chayrreyon (1984) proposed a time dependent entry length. Ohnu"(1986a)

measured the velocity disu'ibution and the entry length. Apparently the only experimental

investigation into pressure drop behavior of oscillatory flow in a straight pipe was reported

by Taylor and Aghili (1954), who gave values for pressure drop which were consistently

higher than steady state values. Their results implicitly included entry length effects. It is

not clear how much of the reported losses were due to the oscillating flow effect alone.

pulsadle i_gw'

Using a Laplace transform, the straight co-axial annulus was analytically solved by

Atabek (1961), where the limiting cases (cu'cular pipe and parallel-plate channel) received

special consideration.
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1.2.3.Turbulent Flow

1.2.3.1. Oscillating Flow

The conceptofturbulenceinoscillatingflow isinseparablefrom theproblem of

mmsition.We will,however, distinguishbetween researghwhich isprimarilyfocussedon

theturbulentflow structureitself,and researchwhose focusisthemmsilion. The above

mentioned experiments by Taylor and ABhUi (1983) _so oovemd the range of l_tbdcm

flow. Hino et al. (1983) investigated turbulent flow in a rectangular duct experimentally in

great detail. For Rema.x-22500 and Va=309, they found that the turbulence sn, ucture efthe

oscillating flow was substantially different from steady flow, and that the accelerating and

deceleratingphasesthemselveshad differentturbulencesu'uctures.While inthe accelerating

phase turbulencewas o'iggerednearthewall butsuppressed,theturbulentkineticenergy

would be generatedexplosivelynearthewallinthedeceleratingphase.They alsoobserved

that "duringthe whole cycle,a layerthatobeys thesemilogarithmiclaw existsabove a

sublaversimilartotheviscoussublayer''l.While intheacceleratingphase,thislayerwas

very thin,itsthicknessincreasedinthe decelerationphase.Hino etal.alsoswessed the

pointthatwhilethe statisticsofoscillatingflow turbulencearequitedifferentfrom steady

flov.,"theelementa.ryprocesswhich maintainstheturbulentproductionisalmostthe same

as inthe steadywal}turbulentflow''2.Ina paper inJapanese,Yoshikietal.(1986) studied

thevelocitydisn'ibu6onsinairbetween two pistonsof arbin'aryphase differenceincluding

180_.The Re number and Va number range was 1.32x]04 to5.94x]04 and 119 to 353,

respectively.Theh"resultsindicatedthattheturbulenceappeared "invelocitywaves farall

condifons independentlyofthepistonphase difference.The instantaneousvelocity

distributionbecame almos!uniform inthecenterregionand looked likethose forsteady

IM Hmo, k_.l,_a.shlwa>a_agi,N_ayarna, A and T. Hara inJ.FluidMechanics,vol.131,p 3"70,198"..,.

2_,_.Hzno, M. Kash_v,ayanagi,Nakayama, A and T. Hara inJ.FluidMechanics,vol.131,p 398, 1983.



turbulent flows, regardless of the phase difference "1. As in laminar flow, tlg near wad]

fluid reacted faster acw.ogding to acce]enttion and doc_Jenttion.

1.2.3.2. Pulsatile Flow

Ext_eHments in Serais_htPioes

Mizushina et al. (1973) measm_l velocity profiles and turbulence intenmties and found

that there are two distinct classes of flows according to the puluttion frequency: For lower

pulsation frequencies, the velocities behave quasi-steady and the turbulence intensity does

not pulsate. For higher pulsation frequencies the velocity profile is quite different from the

steady state form and the turbulence intensity fluctuation pulsates oppositely to the velocity.

Comteix (1979) found, that pulsations do not significantly influence the boundary layer

and the turbulence structure. He therefore applied a steady state turbulence model to

simulate the boundary layer numerically. However, only a single frequency was

invesrigated. Kirntse (1979) compared his own experimenud data with the computations of

Vasilev and Kvon (1971) finding poor agreement.

Ohrni etal.(]980a,b,c;1981a,d) derived4 characteristicparameterstodescribethe

flow pa_tern,but withoutphysicalinterpretation.They examined theinfluenceofthe

pulsationfrequency on flow panem and turbu]em frictionlosses.Three flow regimes

(quasi-steady,intermediateand ineniadominant) arereportedas afunctionof f_,,quency.It

isstatedthattheinstantaneousfrictionfactorwas eitherequal,greaterthan orlessthanthe

steadystatefriction.factor,butthetime averaged frictionfactorwas always greaterthanthe

one forstead)'state.Ohmi etal.(1983) investigatedtheeddy viscositydistributionasa

functionof puJsatingfrequency with aX-wire probe:The distributionwas found different

from the one instead)'flow.Tu and Ramaprian (1983) studiedinstantaneousvelocityand

wall shearstresswhen the mean flow was wellinthe turbu]entrange (Re,m= 5.104).The

frequency was variedover a wide range.Theirresultsshowed thattherune mean flow was

]H. Yoshiki,S.Tsumura.T.Endoh andN. Takama inNihonKikaigakkairombunshu,vol.52,p.3650.
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affected by pulsations when the oscillation frequency approached the ¢hsractcrisdc

frequency of turbulence. According to their results, neither the time mean nor Ib¢ ensemble-

averaged velocity followed the univasal log-law. The unstcsdineu _¢cu_ the uutmicnc¢

intensity and the Reynolds-sucss significandy. They noted that quasi-uc_y

models neglect this eft'oct of unstea,tincss on the time mc_ flow. lsuc_u" et _. (1985b)

studied the sn'ucture of turbulence as • function of time arm-aged Reynolds number,

frequ_cy and amplitude ratio. They presented • turbulence model including • lag in

response time and compared it with thck experimental results. Ohm/et al. (1986b)

measured the turbulent slug and the velocity field in the inlet region of • pipe. Mao and

tianra_' (1985;1986) measured the time variations of the wall shear swcss for small

veloci_, amplitude ratios and high frequencies. Their results indicate that the wall shear

stress varies sharply over a narrow frequency range. Iguchi et al. (1986b) observed two

types of turbulent-slug behavior, according to whether the pulsation frequency was low or

high. In both cases the occurrence of the turbulent slug was periodic, in contrast to the

randomness that is characteristic in stead)' flows. On the basis of his experiments Balatowa

ez al. (1986) concluded that the turbulent fluctuations are not altered by frequency or

channel length. He also found that a peak in the mean velocity coincided with a minimam in

the turbulem fluctuations.

Numerical Ana.lvses of Straight Pipes

Only fulb developed situations have been investigated so far. Vasilev and Kvon (1971)

used a stead)' state turbulence model for pulsatile flov,,. Their results were not confirmed by

Kirmse (1979). Thomas (1974) used a turbulence model which utilized the mean residence

time of a fluid particle at the wall and predicted cross-section averaged values of the .shear

stress for low frequencies You•is (1978) used the low-Re number k-¢ turbulence model to

predict the data of/.,u et al. (1973). Kit• et al. (1980) proposed a fluctuating (five-layer)

eddy viscosib model to calculate the velocity distribution and the friction factor. Their

results are confirmed by experiment. Blondeau.x and Colombini (1985), using the stead,,'

state turbulence model of Saffman, predicted the failure of the log-lay,. The application of



this turbulence model was suggest_ for low fi'_:luenc_s only. and no oonclusions about

• e general validity of the model _ drawn. Ke.bede eta/. (1985) used an alta_ra6ve to

the widely used conc¢i_ of eddy viscosity. They n_pla(_ the Bou_ m'_,-straln law

by a set of differential rote _lua6ons for turbulence sm_r_s. Surprisingly, this low-Re

number differential stress model gave sup_ior prcdic6ons th_ a one-cqu_on turbulence

model, but worse results than the low Re number k-t model. Reddy et al. (l_) applied a

pscudospecu'al method to investigate the viscous wall n_gion. The amplitude of the

pulsauons was large. The pulsauon frequency was large and chmctcristic of the wall

region eddies in steady mrbulem flow. "The mean profiles of axial velocity, fluctuation

intensity and turbulent production rate were essentially the same as in steady flow ''t. The

instantaneous turbulence production rate was largest at large adverse pressure gradients,

which agrees with the findings of Hino et al. (1983) for oscillating flow.

O_her Geome_es

Flows over a fiat plate were experimentally studied by Cousteix (198211985) and Cook

et al. (1985), who also did a numerical analysis. For the flat plate, Cousteix (1982)

obtained similar findings as for the pipe (Cousteix,1979), where the turbulence smacture

near the wall was not much altered by the pulsations. Cook (1985) used an unsteady

boundary layer code together with a steady state turbulence model. A comparison with his

experiments showed fair results. Experiments of Binder (1982) for large amplitude

pulsations in a parallel- plate channel showed that the mean velocity and the slreamwise

turbulent intensity o.f the flow were unaffected by the large amplitude pulsations. The wall

shear stress lead the free stream and its amplitude was less than predicted by theory.

1.2.3.3. Generally Unsteady Turbulent Flows

Gosman (1980)discussedturbulencemodels for the nearwallregionof unsteady

flows.Given theuncertaintyof whether the law of the wallholdsgenerally,he suggesteda

IU. Redd_, J. B. Mcl._ughhn, R. J. Nunge in Fluid Eng. Trans. ASME, vol. 107, n.2, p.205, June 1985
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systematic investigation in nebulcnt oscillating flow in a Idmple |eomeu'y. He mentioned

numerical compu_fions by Yo_,_Lsfor fully developed oscillating/low, ulin B d_ low

Reynolds numbe_ v.u'bulence mode] of 3o_s nnd _r (1973). The re._ of lhOSe

computations suggested that the law of the wall does nol bold for Reynolds numbe_ and

f_.qucncies typical for automobile engines. ]&uckJ"and OA,_d (]983o) _ the infirm.rice

of acceleration and deceleration on velocity, she;u" sD'ess,_c'don factor and eddy viscosity

experimentally. On that basis they _ated a limit fo_ the applicabili_ of the quasi-seaMy sm_

to an unsteady condition. In lguchi and Okmi (19831)) the authors expand the former paper

to frictional losses in a pipe.

1.2.4.Transkional Flows

1.2.4.].TransitioninOscillatingFlow

]:}OV,ina Pi_

The descriptionoftransitiondepends stronglyon thecriterionused todefinetransition.

This criterionisnot necessarilyconsistentinallpublications,nor isitalwa),sstated.

Sergeev (1966)used flow vizualizationtodescril:)¢o'ansidoninoscillatingflow and was

thef'irsttogivean equationrelatingthe criticalRe number totheVa number. Merkli and

Thon'u_n_ (1975) observed o'ansifion in a resonance tube az very high frequencies. For

theseconditionsthe),rcpone.,da weak vortexstreetoutsidethe boundary layer.A similax

observationwas made forchannelflow by $obo' (1985).He alsopre,dicledthesevortices

numerically through stabilityconsiderations.Iiinoetal.(]976) took hot wire

measurements of transition.Their signalsshowed a laminar-likephase duringthe

accelerationand a turbulent-likephase duringdeceleraton.Grassmann and Tuma (1979)

visuaJizcdtransitionby means of'anelectrolytictechniqueand n_portedan equationforthe

critical Rc number. Ohrni et al. (1982) found a large parameter ntnge between laminar and

turbulcm regime and quantifie.z]theirfindingsina a'ansitionequation.Dijkstra(1984)

observed transition,butdid not statea criterion.Numerical studieswere done by Ca)':acet
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al. (1985). They were able to pr_ict the lower bound of Itabil/ty quaUtatively, but not

quantitatively. In his e,xpeg/mental work. Sewne 0988) defined as criterion for mmdlJon a

rapid increase in the meuured nm velocivy flucua6on$. The psmm_er nm_ _ in

his experiments was repre_ntadve for Stifling engines I_m_ snd coolers. Aside _ the

always-lain/nat region and the transitional n:gion he identif'_d abo an always turbulent

region at very high Reynolds and Valensi numbers. He verified that the critics] Re number

in oscillating flow depends on the Valensi number and described two m_hanisrns to trigger

turbulence: externally caused mmsirlon due to incoming fluid, and interns] mmsition due to

the usuaJ boundary layer instability at higher Re numbers. All researchers agree that

transition to turbulence can be described by a relation of the form

Rein.max = const. • Va 0.5

where the constant is some number around 1000.

O_her Geome_es

Pork. and Baird (1970) reported transition during free oscillations of a liquid in an U-

tube. Von Kerczek and Davis (1972) predicted the lower bound of stability of Stokes layers

on a fiat plate. The),, like Caycac et al. (1985), could predict uansition only qualitatively,

but not quantitazive]y. Iguchi et al. (1982) studied free oscillations in an U-tube and defined

transition as the moment, when the velocity profile deviated from the Uchida-type laminar

profile. Akao er al. (1986) studied transitional oscillatory flows in a rectangular duct. In

aueement with Hino (1976) they found that the flow had two different phases: a quasi-

laminar one and a turbulent one. However, the flow in the laminar-like phase was quite _

different from temporas), fully developed laminar flow.

1.2.4.2. Transition in Pulsatile Flow

Gerrard (19711 probed a pulsatile flow with a mean Re-number of 3770 He found that

closer to the wall, in the turbulent phase the velociD, profile can be repn:sented by a power
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law according to (y/R) 1/n. $umida et at. (1984) me..asurcd pressure drop losses in

transitional flow in curved pipes as mean-time values. Good agnmrmnt with In

approximation is reported. Iguchi el at (1986a) studied the ttllminari_tlon of tmbuhmt

slugs in a rectangular duct at four diffm'ent aspect ratios. At low tcotlenttiotts tim behavior

is quasi.steady. At high accelerations they observed the disappearance and tuplmmm_ of

turbulent slugs at fixed phases in a cycle, which cannot Ix inftm'_ from twAdy titre

behavior, gkemer er at. (]985a,b) found for pipe flow that the trmin properties of the flow

was not influenced by the moderate pulsations in both laminar artd turbulent flow regimes.

The)'presentedtheoscillatingpartoftheflow parametersas a functionofamplitudeand

phase atexitationfrequency.Inparticular,theyexplainedthephase lagbetween the me,an

flow and theReynolds st_ssesby therelaxationtime of turbulencerelativetothe

instantaneousmean shear.To capturethisfeatureof turbulence,theyproposed a complex-

valued turbulenceviscosity.Stertlerand Hussain (]986)observed transitionin a pipe flow

usinglaser-doppleranemornetry(LDA) measurement and definedthe stability-n'ansition

boundary as functionsof Reu,mean, Re-frequencyand thefrequency itself.They report

phase-locked turbulent slugs, like Iguctu" et al. (]986a). Tozzi and yon Kerczek (]986)

examined the linear stability theory, for sinusoidally pulsating pipe fio_ and found that the

relevant axisymmetz'ic disturbances are more stable in pulsatile flow than those of the rtman

flov,' alone.

1.2.4.3.TransitioninGenerallyUnsteady Flows

Davis (1976)gave an extensivereview fortheoreticalapproachesto stability,which

could be appliedtooscillator3'flows.12febreand White (1987/investigatedta'ansitionto

turbuJence in a constant-acceleration pipe flow started from rest. It was reported that the

rlmc of _a.nsirion was constant throughout the pipe, and that the critical Re number varied

from 2x105 to5x105 depending on the acceleration.Two characteristicparm'neterswere

dcriv_ tocharacterizetheonsetof transition:an accelerationpazarncterand a local

bounda.ry.-layerthi=kntssRe number.
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1.2.5. Conclusions

l.) Laminar oscillating flow is well undemtood. Analytical and numerical analyses agree

well with experiments.

2.) There are nun'grous investigations on turbulent pulgatile flow, but no a_t exists

on whether pul_tions significandy disturb the steady flow pagtmm. Mizu.china et al

(]973), Ohrm" et al. (]983) and Tu and Ramaprian (]983) I_pogted differences

compared to the quasi-steady pattern, while Binder (]982) and Cogs'teix (1979, 1982,

]985) found no significant differences. It is believed that much of this confusion can be

attributed to a reluctance by the various researchers to use consistent dimensionless

similarity parameters to classify their investiga6ons. However, the coll_tive findings

s_m to indicate that the mean and instantaneous flow parameters arc significantly

affected by mcxlerate to large amplitudes at high but not too high frequencies of

pulsation.

3.) For a'ansitonaJ and turbulent oscillatory roy.', especially the works of Hino et al.

(1983) and $eume (1988) provide a pool of useful experimental data. Additional

qualitative information can be found foremost in the papers on pulsatle flow by Tu and

gamaprian (1983) and Shemer (1985). So far, no numerical investigation of

transitionaJ and turbulent oscillatory flow in a pipe of finite length has been made. Even

for the fully dev.eloped situation, only one investigation was mentioned (Gosman,

1980).

4.) A turbulence model which is well suited for unsteady situations has not been identified

yet. However, it was mentioned by .several authors that the turbulence model sought

should provide a means for the relaxation time of turbulence [$hemer et al. (1985),

Kebebe et al. (1985), lguchi et al.(1985b)].
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1.3. Objectives

l.) Develop a num_ca] algorithm suitable for wiving the governing equadom in an exscz

and efficient manner.

2.) Identify a turbulence model which has the capabilities to predict uns_tdy turbulent

flow.

3.) Evaluate the performance of the turbulence model chosen for its capability to predict

lransition.

4,) If necessa,ry, modify or optimize the chosen turbulence model.

5.) Compute the fluid flow and heat transfer of a number of data points representative for

Stifling engine heaters and coolers and compare the predictions _ith experimental

results if available.

6.) Answ'er the follov, ing questions:

• ke stead>' stale correlabons appropriate representations for the fricl_on coefficien!

Nusseh number of thefoil)'developed turbulentflow?

•Do entrancelengtheffectsplaya role?

•Ishea_transferor fluidflo_ !hemajor contributortoirreversibilitiesinthe cases

considered?

1.4. Outline of This Work

To start with, theproblem willbe describedina generalmathematical way. Inorder !o

estimatethe limitationsoftheapproach chosen itisimportanttostateand inm:xJucethe

assumptions made, which isdone nex!.Then, thechoiceof theturbulencemodel islaidout

and the model and some alternativesarediscussed.At thispoint,thecomplete system of

equationsisestablished,whose so}utionshou]d leadtothedesiredresults.This bringsus
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to the numerical method for solving this systemof equations,which is presentedand

discussednext. Following this, the computational results are given: Fire, we will test the

numericsdmodel and the turbulence model with known steadyssatecues. Then, the

perform_ce of the turbulence model for trmlsition predictionsis shown. Fumlly, the

resultsof the oscillanng flow computations arc given in theorder fluid flow, heal mmsfer

ir_vmibili_.
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2. PHYSICAL SITUATION AND ITS MATHEMATICAL

DESCRIPTION

2.1. Differential Equations

The governing differentia] equations express lh¢ conservation of mass, momentum and

energy fora continuum and arcgiven inthefollowingforan infinitesimalconm>l volume.

Conserva6on of mass:

_P

b'_"+ div(p_ )= 0 {2..I)

Conservationofmonxnlum:

pB'_ pG.grad(_) grad(p)+ div(t)÷ _"

Conserva_on ofchert' asentha]pycqua6on (neglectingradiation):

(2.2)

p._- + p_,&,rad(h)= - div(_)+ _,g'rad(p)÷ _(b (2.3)

...@
where u isthe velocityvector,p isthedensity,p the thermodynamic pressureand _ is

thedynamic viscosity,'tdenotes thesn'esstensorand -i# standsforany additionalbody

forces,h isthespecificenthalpyof thefluidand "_ representstheheat fluxvector.•

denotes the _iscousdissipationfunctionand isdefinedas

N_ ---t.grad(_) (2.4)
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It may be pointed out here that this set of differential _lUadons wlletlMw with the

boundary conditions of Chapter 2.4 specify the problem completely, even in the case of

turbulent flow. However, •pmedcal solution of there diffenmlia] equations involves rome

averaging ( e.g. ensemble averaging) over drne and/or space. It is this process of

averaging, during which the new unknown terms ant created, for which a turbulence mode]

needs to be employed later on.

2.2. Basic Assumptions

The heat transfer and fluid flow problem in Stifling engine heat exchangers combines

several different problems, some of which are not of primary importance of tiffs research.

For instance, a Sdrling engine heater usually consists of a bundle of bent circular robes.

The fact that the tubes are bent further complicates the underlying situation but is not

essential in order to reach the goal of this research. Therefore, the physical domain in this

research shall be a straight tube. Also, we will assume that no changes happen in the

azimuthal direction and that the velocity in this direction is zero,

w = 0 _0 = 0 (2.5)

Throughout this work the fluid will be treated as a Newton•an continuum. Together

with theStokesh)pothesis,we can expressthedivergence of thestresstensorof_l. (2.2)

as

div('t ) = 2 div(p def(_)) - 2 grad(It dive))

_,'here def("_) denotes the deformation tensor and is defined as

(2.6)

l [grad(_)+ [grad(_)]"r]def(_)--
(2.7)



Here the superscript "T" denotes the mmspose of the umscr. With this input and

assumption of no bo_'forces, the conservation equation for mon_ntum becomes the

Navier-Stokes equations:

p + p .gnd( ) = -Fad(p)- div( 

(2.8)

I)eirming the pressure as

IP = P +'_la div(_)I

equation (2.'/) can be re_Tiuen in the form

(2.9)

(2.10)

h may be noted here that, for the laminar case, a more convenient form of P could have

been defined as

P = p - _- Ia div(_)
(2.1 l)

h can be shown that, for the case of constant dynamic viscosity, with this formulation

the momentum equations can be expressed like eq. (2.10) but without the last term. Often,

in laminar flow problems, the viscosity can be zrealed as constlml. However, in case of

turbulent flow, the effecx of turbulent mixing is frequently expressed by the concept of a

turbulent viscosity _'hich is not a fluid property but depends on the flow conditions and is

therefore not a constant. In this case, the definition of P as in eq. (2.9) is preferred and eq.
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(2. I0) is applicable as written. The formulation of eq. (2. I0) in axisymmetrical coordinates

is given in the appendix.

Generally, the phydca] properties of the woddng fluid should be

dependent. Since we sre concerned with turbulent osciHnn, y flows, turbulent diffusion

will be the dominant effect, and a variation in the molecular diffusion coefficient due to

temperature effects may be secondary. For now we will n)s_'icl the oomputsfions to

constant properties. Once the basic problems in turbulent oscillatory flow sre undetmond,

variable properties may be introduced. The numerical prognun is perfecOy capable of

handling variable properties. As a consequence of the assumptions of constant properties

the convective heat transfer problem is decoupled from the fluid flow problem and the laner

can be solvedfirst.

In the energy equation (2.3), the f'trst term on the left hand side may be simplified using

Fourier's law,

= -kgrad(T) (2.12)

To transform h to T as the variable on the left hand side ofeq. (2.3), we use the

thermodynamic identity

(2.13)

where D/Dr represents the substantial derivative and 13denotes the isobaric coefficient

of compressibility'

(o_(l/P) 1

(2.14)
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which is zero in case of an incompressible liquid and I/T for an ide.,al gas. Using the

vector identiy

div[k oad('r)] = div['_p grad (T)] + k g_c2p(cp)Ip_(T)
(2.15}

theenergy equation takestheform

p--_+ p_.grad(T)= div[c-_ grad(T)]+
13T H_._q>

+  .grad(p)} + cp

grad(%)
+ k ograd(T)

(2.16)

The viscousdissipationfunction¢_fora Ne_1onian fluidinaxisymmemc coordinates

isgiven in theappendix.Assuming co_tantpropert/es,the lastterm ofe,q.(2.16)iszero.

For an ideal E_, zhis _uation then becomes

BT + p_.grad(T) = div[ grad(T)]+ _ {-- + _.grad(p)} .+ ¢_
(2.17)

Equations (2.I),(2.I0) and (2.17)provide fourequationsforthe fourindependent

variablesarc u,v,T and P.They arc thecomplete setof equationsnccessar),todescribethe

fluidrio,,,,'and heattransferinoscillatingflow conditions,For irmversibilityconsiderations

cn_opy comes intoplaybut no additionaldifferentialequationneeds to bc solve.,d.For a

singlephase singlesubstanceour thermodynamic system has two degreesof freedom. Wc

have alreadyspccifie,d p and T. Thus s= s(P,T),and we can solvelocallyfors.The

informationcomem ofthesecond lay,of thermodynamics isimplicitlycontainedinthe

momentum and energy equationsby virtueofthe definitionof the stresstensorand by
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Fourier's law, both of which specify directions of processes. However, the differential

equation for the e.nu'opy is useful w determine the amount of mm)py gevemmd in • given

conu'ol volume. But since the generated entropy is • dcduc_ quantity bas_ upon the

solution of the equations above, its derivation will be deferrvd to chapu:r I 1.

Summarizing, the most important basic assumptions an_ listed in the following table:

Table 2.1: Basic Assumptions

• axisyrru'nctric situation

• constant properties

• continuum

• Ne_'tonian fluid

• Stokes hypothesis

• no body forces

• Fourier's law

• No radiation heat n'ansfer

2.3. Dimensional Analysis

Two differem physical situations are physically equivalent if the dimensionless

parameters characteristical for the situation are the same. In order to obtain mearungful

dimensionless parameters, proper scales for length, time, velocity, pressure and

temperature have to be defined. Seume and Simon (1986a) have identified the following

scales for the oscillalory flow problem:

length scale Xscal e = R = D/2 pipe radius

rime scale tscal e = l/to rime for one oscillation

velocity scale Usca] e ffi Um,ma x amplitude of the mean velociP.
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pressure scale Pscale = p urn,max 2

tcmpcran_ scaJe tscale= (AT_f

Since fornow we are concerned with tel•dye temperatures and prer_urcs only, w¢ will

sublet'acta reference value (To, Po) from T and p. For • dtuadon where th_ b • mgnificam

variation in the thermodynamic pressure as in real SdrIing engines, it may b¢ advlmmgcous

to scale the pressure with some reference pressure and not with the vcJocity scale

(Rec_enwa]d, 1989). The precise nature of the temperature scaJe (AT)Rf is yet to be

determined. For the University of Minnesota oscillatory flow experiment, • suitable

definition would be (AT)ref = Twall - Tin. Using these scales and suitable reference values

for the thermophysica] properties, the dimensionless quantities are •

x 1"

x= R r= R t=Wt

u v

umm_ Umm_

R 2

= • grad = R grad
Ummax 2

div = R div

2

P= P Ummax2 P = P + _ lJ div(_ "_) T = _

P- PO

P = Prcf _ = P,,_r Cp= _:_r k,_

With these definitions the conse_'adon equations of chapter 2.2 can be written in the

followin[ way.
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Mass conservation:

(2.18)

Conte1"vation of morrgntum:

(2.19)

Energy equation:

Pr -- "cp

+ Va Ec _-_-Pt +½RemaxEc'u'grad(p)+Ec¢ (2.20)

where the dimensionless parameters are defined as:

Pref Ummax D

Re = (2.21)
Pref

Va = prefr_D 2
4 l.tref (2.22)

I_ref Cpref
F'rffi (2.23)

k_f

Umma_"
Ec = (2.24)

Cpref(AT)ref
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Other, related dimensional parameters could have been be used inv,ead, like

Sir= teD =4 Va
um.m.----"_ (2.25)

i

Umn-_x V 1 (AT)retMa

V y- I To Ec (ideal gas) (2.26)

clef
where y = -- (2.27)

Cvmf

Geometric similarity is maintained if L/D is identical. For sinusoidal flow, the relative

amplitude ratio, AR, is a related and dependent similarity parameter:

2 Ummax 1D Rem_
AR = = ...sinusoida]flov, = (2.28)

coL "'" 2L Va

2.4. Boundar.v Conditions

The boundary conditions for these equations are:

wall:

centerline

inflow

outflo_

Uwall = 0

_u
_=0

UII_ m Um

au
c_×= 0

V

Vwatl = 0

Vc_nmrline = 0

via = 0

YOU t = 0

P

ap
at =0

/_P=O

o
ax =

T

TwaJI = const.

0T
_"=0

Tin = ¢,on St.

8"I"
_=0
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2.5. Operating Range of Experiment and Points of Investigation

Seume and Simon (1986a) have oornpiled the similarity paran_rs for • iPreaunumber

of Sm'ling engines. BaseA on this information, the test rig of the University of Minne.sota

was dcsigne, d to cover the parameter range of most of the Siding engines compiled. Figure

2.1 shows the operating range of the experiment. The two off_t regions ¢:ocrcq_d to

two different pipe diameters. Within this operating range, the points chosen for numerical

investigation are markeA, maintaining the lenering from the experiments of Seume (1988).

le+06

le+05

Ie+04

le+03

I I l I I I I I I I I l I I I I I I I I I I I IlL

aB+l

+o I

'B+

1.5"pipe ..-" 2.125:'pipe _

J o-'" m i

i

G

:-" ]guchi¢tal.and Ohrnietal. _
Re = SOO_Va

le+02
F
l

i l I i I

lO
Va

i i i i i i I i i ' I

I00 1000

Fig. 2.1: Data points inrestigated
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3. TURBULENCE MODELING OF OSCILLATORY FLOW

The purpose of this chapter is to document The choice ofl mrbul_vc model for

investigation and to discuss Tome of its alre.ady known deficiencies with Tc_._'t m tbeir

impact on oscLllating flow modeling.

For now',we willreswictour attentiontoconstantdensinjflows.Since[he Cartesian

tensornota_on dominates theturbulenceliterature,itshallbe adopted here.

3.1. Background

As pointed out in Chapter 2, the basic equations to describe the fluid flow and heat

transferproblem arevalidalsointhe caseof turbulence.However, itcan be shown thatin

orderto solvea problem with themathematicalmodel of Chapter 2,Re9g gridpointsm 3

dimensions and Re 3/'_timestepsarenecessary.An exarnpleof therequire,d effortto fu.IIy

simLdazestead)'turbulentchannelflow (withoutan),turbulencemodel) ata Re number of

10 000 isgiven by Ragalloand Moin (1984):Ifthe smallesteddieswere n_solvedwith four

gridpointsin each direction,a totalof 5 x IO_0gridpointsand 2000 time stepswould be

necessa.rytoget tothestatisticalsteadystate.For an oscillatingflow situation,a large

number ofcycleswould have tobe computed tofiherout theperiodicsteadystate.Itwould

be impracticaland excessivelyexpensivetosolvesuch a huge system of equationsand to

perform so many time steps.Even ifa "direct"solutionof theturbulenceproblem was

achieve.d,thevasta.mounlof generateddatawould have tobe treatedstatistically,i.e.

averaged,inordertoprovidemanageable and meaningful information.

Averaging thenonlinearconstituentequationsinslcadof theresultseliminatessome of

themathematical problems associatedwith a"direct"solution,but introducesnew,

unkno_,n terms forwhich a closurehas to be found by eitherexperiment or thcoD'.There

arc scvcra.]_'aysby v,'hi_'htheconstituentequationscan bc averaged.Ifwe are intercstccli.n
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the coarse structureof"turbulence, a s.b&rM model is zppmpfiz=. Here. the |ov_rning

equations arc ava'_! ov_ r,oo_ _ volume and dr_ imervzL Tbe flow can Ix

ctlculatedon a Ip'id Stealer than this _ volume and lime interval. Itis the effect of the

turbulence dir_cdyin this smallvolumederinsthis lime intervalon theflow "seen"by the

grid which has to be provided by the subgrid model. If we are interested only in lime-mean

vaJues,one can average the governing equations overs long lime andcompme the lime-

averages of the flow quantities. This is usuLlly called Rqnol4f averaging. With Reynolds

averaging, the details of the turbulenceutuctm_arelost; only the effect of the turbulence

on the mean flow is described. Another technique for averaging is the renorma/im6on

group (RNG) approach. In the RNG theor),, the velocity field is first mmsformed into a

wave-number space by a Fourier transform. The short wave-length modes bum a narrow

wave-vector band are then averaged and their effect on the ions wave-vector modes (in

which one is usually interested) is described by a renorma]ized viscosity. This process is

repeated until _ scales below a certain level of wave-lengths are eliminated. RNG theor),

can generate subgrid models or Reynolds averaged models, depending on what the lowest

aI}owab]e level of wave-lengths should be. Details of this approach can be found in Yakhot

and Orszag (] 986).

Since the scope of this work is to give insights about practically useful quantities like

friction coefficient and Nusselt number, the details of the turbulence sn'ucture need not be

resolved. Consequently, a subgrid model was not considered in this re._,.arch.

Once a decision.has been made which form of averaging should be used for a given

problem, there are a number of closure options for the new terms created in the averaging

process. The remainder of this chapter deals with the consequences of the closure

assumpzionsmade inthe chosenmode].
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3.2. Phase Averaged Governing Equations

The concept of time.avenging becomes more cumberuxne in unsteady flows.

According to Reynolds and Hussain (1972), the time independent mean flow is found by

time-averaging the flow over some long time. If we are dealing with cycles (e.g. pulsafile

flow), this long time must be an integer multiple of a cycle time. A time-periodic cyclic

quantity is ob_ned by "phase" avenging, i.e. ensemble avenging al fixed times of a

cycle For completely unsteady flows, the only way an average can be obtained is ensemble

averaging the results of many experimen_ at fixed times measured from the uan of the

experiment and having identical initial conditions. Since our anention is oscillatory flow,

the time-mean of this flow is known to be zero, and long-time averaging is obsolete. The

periodic steady state--which is the focus of this work--can be exu'acted from the full

equations by phase-averaging.

The process of phase-averaging the equations consists of three steps:

(1) decompose any transport quantity into a periodic and a randomly fluctuating pan

z = _ + z'; (2) insert the decomposed quantities into the governing equations; and (3)

phase-averagetheequations.In thefollowing,an aposu'ophewill denote a fluctuatingpan

of a quantity,an overbarwillindicatethephase averageover thisquantity.

With thistechniqueone isnotlimitedtotheconditionthatthecharacteristiclimeof the

flow must be much largerthantheKolmogorov lime scale,(v/l:)1/'2.The emphasis ison the

conditionthatthetimebehaviorof theflow must have a nonr'mndom su'ucturewhich can be

recoveredby properaveraging.Since thisisthe caseeven forhigh frequencyoscillator'),

flows,a turbulencemodel may successfullybe appliedtothissituation.
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Continuity Equations:

=0 =0 =0
N N

O.la,b,c)

The phase averaged and the fluctuating velocity fields both s_ffy the continuity

equation independently. Since the continuity equation is linear, averaging causes no new

terms in equation (3.1b). Note that new quantities would be inm:_duc_l if density

fluctuations were to play a role here.

Navier-Stokes Equations:

(3.2)

,,'here:l

Rate of change of the

mean velocity

Change of mean momentum

due to convective transport in

mean velocity field

Change ofmean momentum

•due toconvectiveu'anspon in

fluctuatingvelocityfield

Mean drivingforce

Diffusionof mean mon_ntum

As can be seen from equation(3.2),thephase averaged n'anspon equationsforthe

mean momentum containa term involving the unknown fluctuating ve]ocity. If no m4nspon
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equation is solved for the momentum mmspon of the fluctuating momentum field, d_ term

must be modeled with a turbulence model. However, even if mu_pon equations are wived

for these terms, these Innspon equations will contain other, hight order atom whi_

originate during the averaging of those equations and which must be modeled. The pe/m is

that any type of averaging of a non-linear transport equarlon like the Navier-Smkes

equations will lead to additional unknown terms (well-known closure problem).

Energy Equation:

(3.3)

where £ denotes the turbulent dissipation rate def'med later. Here, the third term ¢m the

LHS of equation (3.3) must be modeled as well as the pressure-diffusion term u'j ap'/_xj.

However, according to Mansour (1989), this term is negligible.

3.3. Turbulence Models for the Phase.Averaged Equalions

h should be emphasized here that the turbulence model to pr_ct oscillating flow

should give correct answers for engineering applications. It should be as simple as possible

and may very well be "custom made" for oscillating flow in a pipe and nm be applicable to

other situations. It is not the purpose of this research to find a generally valid turbulence

model for an), unsteady flow situation.

The turbulence models in question can be divided into two groups, i.e. those models

which use the eddy viscosity concept and those which directly solve an equation for the

term {p u'j _u'i/_xj }. The latter models are called s_'ess models. In a differential s_'ess

model, a dJfferentia.] equation is derived for each component of the turbulent shear s'_'ess

tensor, p u 2'uj'. The algebraic s_'ess model simplifies those differential equations
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stffl3ciendy that an algebraic relation can be exutcted. Among the models which use the

eddy viscosity conoept are the mixing length model, the k-t model and the _ funcdon-

vordcity model.

3.3.1. Eddy Viscosity Concept

The third term on the left hand side of equation (3.2) is f_iuendy celled "Reynolds

stresses" or "turbulent sn'esses" because it is responsible for the enhanced turbulent cross

sneam wanspon of sn-camwise momentum and therefore works just like the diffusion of

momentum which stems from the viscous stresses. This similarity between the laminar

diffusion and the turbulent diffusion-like convection is the basis of a simple, old, yet very

successful turbulence concept, the eddy viscosity concept (EVC). Noting that for now

_'j/_xj = O, we can transform this term as

,uj._._x =a___ p =. a (_'u)
J J J (3.4)

According to Boussinesq (1 g77), the Reynolds sn'esses can be expressed just like

viscous stresses, but with a different diHusivity, called the eddy viscosity Pt:

EVC

(3.5)

This equation represents the eddy-viscosity concept, in which k stands for the turbulent

kinetic energy, defined as

(3.6)
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and _ij is the Kronecker delta in tensor form. The last term in eq. (3.5) can be absorbed

in the pressure term without loss of generality 1. For an arbitrary walar mmspon variable _,

the EVC can be written as

(3.7)

where o_ is the appropriate turbulent Prandtl number.

Following theanalogy used here,the turbulentmotion isanalogousto themolecular,

the "turbulenteddy "istheanalogy forthemolecule and,afterPrandtl,theanalog')'tothe

mean freepathisthe so-calledmixing length.From kinetictheoryitisknown thatthe

dynamic viscosib,isproportionaltothemean speed of a molecule timesthemean freepath.

Consequently,theturbulentviscosizycan be expressedas

vt- Uscalc"L_c (3.8)

• The problem isnow reduced tofindingappropriatevelocityand lengthscalesand a

propo_ona.lib'constantinordertodetermineMr-Once/..ttisknown, theReynolds slzesses

can bc evaluatedwith(3.5)and theNavier-Stokesequationscan be solved.Some

consequences of theEVC arcdiscussedinsection3.3.6..

3.3.2. Mixing -Length Model

The mixing length model, ingoduced by Prandtl in 1925, is still widely used today in

industry and shall therefore be reviewed for its applicability in oscillating pipe flow. It uses

the ccldy viscosity, concept of equation (3.5) and can be summarized as follows:

• }en/_thscale= mi×ing length]m ;needs tobe specifiedfrom empirica/information

]Then.themodifiedpressureofcqu (2.9)becomesP • p + 2/3[lacli_.'('_).,pk]
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velocity scale = !m

(3.9)

• Proportionality constant - 1.0

For a 2-dimensional boundary layer type situation, the Reynolds stresses then become:

(3.10)

The main features of this model are:

+ good results for simple flows

+ simpletoimplement

+ ¢conomicaJ

- forcomplex flows,itisdifficulttospecify]m

- does not taken'a.nsponof turbulenceintoaccount

- not suitab]_forrapid]),developing flows and rccirculatingflows

Because of the shoncomings outlinedabove,themixing lengthmodel cannotbe used in

this stud.,,'.

3.3.3. Comparative Computational Tests of Various Turbulence Models

Presently, there are many versions of k-t modelsand stress models available, and it is

not obvious which model is best suited for the given task. However, most recently, a

number of researchers conducted exhaustive tests of various turbulence models for the

Reynolds-averaged Navier-Stokes equations.
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Patel, RoRi and Scheurer (1985) examined and tested 8 turbulence models for turbulent

flow past a flat plate with and without pressure gnutient. The models invcsdpu_d were _¢

k-¢ models of Chien (1982), Dutoga and Michan:! (1981), Hassid and Porch (19"/8),

Hoffmann (1975), Larn and Bremhorst (1981), Launder and Sharma (1974), Reynolds

(1976) and the k-(o model of Wilcox and Rubesin (19g0). All those models m'e based on

eddy-viscosity concept. Patel eL al. found that the models of Chien, Lain and

Brernhorst, Launder and Sharrna and Wilcox and Rubesin lave comparable results and

were decidedly bener than the others. For turbulence model modifications it teems

desirable that a model bears an immediate relationship with physically measurable

quantities. This, however, is not the case for the Wilcox and Rubesin model.

Henkes and Hoogedoorn (1989) did a similar performance evaluation of turbulence

rrr_elsfornatur",dconvectionflowsalong a verticalfiat plate.They investigatedthe k4:

models of Chien (1982),Hassid and Porch (1978),Hoffman (1975),Jones and Launder

(1972),Lain and Bremhorst (1981),Reynolds (1976) and To and Humphrey (1975) as

wellas thehigh-Reynolds number k-¢ model. Additionally,they investigatedthe algebraic

stressmodel of Cebeci and Smith (19"/4).Their findingswere similartothose ofPatelec

sl.(1995):Overall,themodels of Chien (1982),Jones and Launder (1972)and I.,amand

Bremhorst (1981) shov,cd the bestresults_Itisremarkable thatthealgebraicstressmodel

by Cebe.ciand Smith gave significantlyworse predictionsthan thek-r model above.

Maninuzzi and Pollard (1989) compared turbulence models for steady turbulent fully

developed pipe flo_, at Re numbers of 10000, 38000, 90000 and 380000. They compared

the high-Reynolds number k-t: model, the Lam.Brernhorst low-Re number model and four

variants of an algebraic stress model (the ones of Launder et. al. (1975) and Naot et. al.

(1970), both for with and without _.'all functions). They showed that the low-Re number k-

¢ model gave the best results and claimed that the use of algebraic sn-ess models should be

cont"me.c] to high Re numbers or regions ,.,,'here there is only moderate shear.
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In a 1985 paper, Kebede, Launder and Younis inves_gawd whether a diff=remial stress

model applied to pdsatil¢ flow yickl_ ben=r results than the ocxwentiona] EVC. They

conclude 01at the EVC with k-c model has the best perfmmam'¢ near the wall. A one-
m

equation EVC model _ to nuher large phase/e_ of u'v' as comlmed to the

experiment, while the differentia] so'cu model produced s too large phase/a&.

Conclusions. On lhe basis of these tests, su'ess models did not yield superior results

to models using the eddy viscosity concepL Moreover, since stress models are also more

complicated to implement and mo_ expensive to run, a stress model shall not be used in

this work. The models of Jones and Launder (1972) (or the updated version by Launder

and Sharrm, 1974), Chien (1982) and Lain and Bremhorst (1981) seem to be the most

versatile and reliable. Of those, the Larn-Bremhorst model is the only one which uses the

mac isotropic turbulent dissipation rate itself and is the e,asiest to imp]=ment

computationally. Therefore we have chosen the l..am-Bremhorst model for further

investigation.

3.3.4.The Lam-Bremhorst Form ofthe k-¢ Model

The k-¢ model uses the eddy viscosity concept, but different scales than the mixing

length model. Whereas it has long been agreed on that _ represents a well chosen

veloci_, scale for the large scale motion s, many attempts have been made to conveniemly

spe.cif)' a length scale. Mainly because of simple boundary conditions the use of£ as a

quasi-length scale 2 became very common. Even though the t_bulen! dissipation occurs at

the smallest scaJes. _: is a quasi-length scale for the large scale motion, h is defined as:

] h is known that the turbulent kinetic energy is contained mainly in the large scale eddies. Therefore _"

is a velocity scale for lhc large _ale turbulent mouon,
3

t kineucenerg_ k k k3" f.'_..... =:_ t-
: _aract. time ¢ f- s/_ f- t
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From here on, we will only be concerned with the isotropic pan of_:

O.II)

0.12)

In the k-¢ model, two additional partial differentia] equations for the turbulent kinetic

cnerg3' and the turbulent dissipation rate art derived by manipulating the full, dine-

dependent Navier-Stokes equations. The resulting equations for k and £ contain ._mae re'ms

which must be mode}cal. The hypotheses and assumptions going into this closure were

examined most recent])' by Mansour (1989) and shall not be discussed here. It may,

however, be pointedout herethatifa farreachingmodificationofthe k-£ model prcwts to

be necessa.D'foroscillatoryflows,the closureassumptionsthemselves willbe up for

discussion.In hispaper,Mansout pointedout thatthe existingmodels forthe _:equation

shouldbe improved nearthe wall.

Harlov,and Nakayama (1967)were thefirsttointroducea k-t.model,but theixmodel

did not predictturbulentpipeflow well.Jones and Launder (1972, 1973) proposed a

differentk-r model which gave good resultsforI gx_atnumber of flows.Based on the

mode] of Jones ahd Launder, a number of modified low-Re number forms have been

proposed by variousresearchers.All of thesedifferentforms use thesame, genenffiy

agreed on closureassumptionsfortheexactequationsfork and (:.The differencebetween

them ishob theboundary conditionsareintroducedand how the wallfunctionsm'e

formulated The particularformulationof Lain and Bremhorst (1981)offerstheadvantage

thatno ad_do)_a.]terms areadded Iothek ort equationincaseoflow turbulencelevels.As

mentioned above, this version v,ill be adopted here for further work and is shov,'n in Table
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3. I. For a more thorough discussion of the differences between the Jones/Launder and the

_remhorst models, the reader is referred to the work of Schmidl and Patankar (198"/).

The so-called high-Reynolds number model (iIRN) is a special case where the

functions fp, fl and f2 are set to 1. However, in case of fully turbulent flow where the

turbulence Reynolds numbers Rk and R t are high, those functions asymptotically approach

unity. The real difference between the HRN and the low-Reynolds number model O.,RN) is

due to the boundary conditions.

Boundar:_ Conditions for the HRN Model.

centerline Neumann boundary condition _k/_ = 0 _f../ar= 0

inflow Dirichletboundary condition

outflo_ Neumann boundary condition ak_x = 0 af,/_x= 0

wall rakeguidance from thelaw of thewalland setthenearwallviscosity

Io llt= laY"/u+ where u.t= cp0"25k0"5

Neumann bounda.ryconditionfork ak/'dr= 0

Dirich]etBoundary conditionfor_: E = uz3/_ '

Boundary Conditions for the LRN Model.

Same as above forcemerline,inflowand outflow.

wall Dirichletand Neumann boundary conditionfork

Neumann boundary conditionfori: /}t./'dr= 0

k--O,_k/'dr = 0
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Table 3.1:The La.,n.BremhorslForm of the k.cTurbulence Model

EVC v t const. Osca]e ^
i |

Pr_ndd kv 2 _ k 2
Kolmogorov v, = ct_f_ ¢ = C_ f. T
Expression

i i ii

(3.]3)

a_ - ac
p _-- + PU_xx

Generation

Constant el. L

Value 0.09

el c2

1.92 1.44

Ok
i

1.0 1.3

__ a_, ro_ 55" ' aE

' J_Xj : Vt _,c_xj _x., _x
• J (3.16a,b)

i, i i

HRN model: fta = fl = f2 = ].0

LRN model:

2o)f_=(,- _p(-o.o_63R,))_(,.[
(3.17)

f_= 1. ( o.oss)3
(3.18)

= l -exp(-R_ )f2 (3.19)

k_

v E (3.20)

4-kv

v (3.21_
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3.3.5. Evaluation of the Constants in the k-¢ Model

There are 5 empirical constants for the model, cp, el, c2, Ok, o¢. in order w judge

whether the customarily used values of those constants are applicable also for oscillatory

flows, it is useful to examine how these constants were detennin_ for fully turbulent flow

(fl,t= fl=f2 = l ).

. The closure for G, Eq. (3.16b), applied to thin shear layers, yields

m

_i u'iu'j

¢)X. Vt
J (3.22)

Substitutionof (3.22)intothedefinitionof G, Eq.(3.16a),leadsto

m2 m2
U °.U'. U'.U'.

I J I j

vt k2

c,_T (3.23)

For localequilibriumlayersthegenerationand destructionof turbulentkineticener_..'

areinbalance:

G = ¢ (3.24)

Thus c cancelsand

Cp:/ I J I
t k J (3.25)

The squarerootof thequantib'ofthefighthand sidewas measured by Champagne,

H;trrisand Con'sin(1970) tobe approximately 0.3.Hence el,t= 0.09.
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'_, Batchelorand Townsend (1948)found flintforgridgenerstedturbulenceInhigh

Re numbers, k isinverselyproportionaltothedislanceIotheip'id,

k - I/xI or k - y I/xI y- const. (3.26)

The wanspon equation for stead), flow past a turbulence grid is

h'7.

(3.27)

Together withEq. (3.26)thisbecomes

The n'ansponequationforE behind thegridis

= _2-- .c2
ul axI

(3.29)

Inserting Eq.(3.28) into (3.29) shows that c 2 = 2. Later on, c 2 is adjusted to 1.92.

_. Near the wall Eq. (3.2,1) holds approximately and the universal law of the wall

maybe assume:

. Inf9v')

I¢ (3.30)

u_ u_ y

U'* -- U-'_- Y" = _V U_ _-
(3.31a,b.¢)

where u_"isthenormaJizcd velocib,and y+ isthedimensionlesswalldistan;eand u.tis

thefrictionvelociD.
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Neglecting the convective terms, using Eq. (3.24). and substituting v t hum (3.13), the

mmspon equation for c becomes

 to,, j + _ (3.32)

Equation (3.24) alone, combined with the definition for G, Eq. (3.16), yields another

equation for ¢. Assuming that near the wall the shear slress is approximately equal to the

wall shear stress and using the definition for u,_ from (3.31a), we can write

(3.33)

With this,(3.32)becomes:

=0
(3.34)

Using the law of the wall (3.30),the velocilygradientsareevaluatedas

_)_l= u_.2.__ _u2"_2=. u_2__

_x 2 _x2 _)x_ tcx_

From experimental data (e.g. Laufer 1954) il is known thai k - 3.5 u,t2.

(3.34)can be solvedforCl"

Then Eq.

Cl =C 2 "
(3.35)
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For c2 = 1.92,g = 0.4 and o£ - 1.3,cI isdetermined _ IA,4.

Ahematively, from F,q.(3.25),isisknown thatk ,,uT2 _" 05.'Then,Eq. (3.35)©an

be rewritten as

(3.36)

RodJ and Scheurer(1986)argue that theassumption about thewall shearsn-esskading

toE.q.(3.33)isnot realisticforadversepressuregradientflows.

o k and oe:I"The two Prandtlnumbers were firstassumed to be closetounity_.
l

Then "...mony calculanonswere performed inwhich theconstantswere systematically

varied The valueschosen are thosewhich we believedgave thebestoverallagreement for

theflows considered ,.2.However, theflows consideredwere allsteadyflows,h seems

Likelythata tuningof theturbulentPrandtlnumbers tounsteadyflows might yielddifferent

results.But inturbulentpipeflows,themost dominant terms inthek and t equationarethe

produc6on and destructionterms.Thereforeitseems unlikelythata moderate change inok

and oE has a significanteffecton theoverallresults.

Conclusions. The constantsare determined for full),turbulentflog'in the near wall

region for simplified equilibrium situations. Even though Cl is not specifically derived for

stead)' flows, based on the observations of Redi and Scheurer (1986), it appears likely thax

this constant is affected b)' the unsteadiness of the flow. The values for o k and o¢ are tied

to stead)' flog experiments, but it is believed that the impact of a variation of their values is

small.

1%'. Rodl (19_;-:_ in Turbulence Models and Their Application in Hydraulics: z State oi' the
Art Re_ ie_, 2nd ed.. lnt Assoc. for H)'ar. Rcs., Delft, p.28

2K Han._ah: and B.E. Launder (19721 m J. Fluid Mech, v.52, pa.n.4, p.619
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3.3.6. Discussion of Some Obvious Shortcomings of the Turbulence Model _n

Even though the eddy viscosity concept contains many a'ucial assumptions, lhc

mcasurcmenu of Seumrz (1988) clearly indicate that the turbulent mmspa't is pmpa'tional

to the level of fluctuations and suggest that some kind of EVC seems to be appropriate for

oscillating flows.

A troublesome assumption of the EVC underlying the k-£ model is the stress-strain

response time. Commonly. turbulence is seen as a cascade process in which energy is

transferred from the mean flow field to ever smaller eddies. At the end of this cascade

process dissipation of this energy into molecular motion takes place. The amount of energy

dissipated depends on the large scale motion, whereas the scale m which this dissipation

occurs depends on the molecular viscosity. Clearly, this cascade process takes time in

reality. However, the eddy viscosity concept as used here disregards this fact. With the

EVC, a change in the large scale mean flow causes an immediate response in the turbulent

stresses which are due to the action of the smaller scale motion. For strongly unsteady

flows itseems tobe absolutelynecessarytomodify theEVC in ordertoincorporatea

relaxationtime.Such proposalshave been made inthe literature.Shemer etal.(19857

proposed thattheeddy viscosityshouldbe acomplex number and mentioned earlier

successfulcomputations with such a model. Iguchietal.(1985b) proposed a model forthe

axialcomponent of thefluctuatingvelocityU'rmswhich took thephase lag between Urnand

u'rmsintoaccount.However, thismode] requiredtheexperimentalmeasurement of the

phase lagwhich isimpractical.

The eddy viscosityconcept hingeson theassumption of localisou'opyof turbulence,

i.e.thatthe turbulencestructureislocallyindependentofdire,ction.Itisknown thatthis

conditionisfrequentlynot satisfied.Especiallyinlow Re number flows,where the large

scaleand the smallscaleare not farapart,theassumption of localisou'opyseems physically

questionable.Despite that, turbulencemodels usingtheeddy viscosiLvconcept have proven
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to be highly successful in recent years. One reason for this could be that saongly

ar_sou'opic turbulent eddies have linle influence on the main v¢loci_, field, t u'leory which

is supported by Yakhot and Orszag (1986). Moreover, as Yakbot and Orszag (1986) re'gut,

the effects of anisom0py might be asymptotically small and may be nelleczed. Rodi (1984)

asserted that "'in recirculating flows where the normal stress and shear.stress lemss in the

momentum equations are of the same order, both _rms are often small compared _th lht

inertial and pressure-gradient terms so that isotropy of the turbulence model is of little

imp o rta nce " l .

Rodi and Scheurer (1986) have found that the predictions with the k-t model become

rather poor for a fiat plate boundary' layer for the case of a su'ong adverse pressure gradient

and suggest a modification to the model to overcome this difficulty. They showed that the

problem of the LRN model to predict strongly adverse-pressure-gradient fiat plat boundary

layers satisfactorily stemmed from the near wall region. The problem was traced to a too

small generation rate of i: in the near wall region which leads to an oversized length scale

and too high turbulent viscosities. However, the results of this study indicated that a

modification of the k-t model as proposed by Hanjalic and Launder (1980) worked well for

adverse pressure gradient situations on a flat plate.

Even though Rodi and Scheurer's findings uncover a serious problem in the k-I_ model,

they cannot be used directly for oscillator')' pipe flog'. First, the convective deceleration

over a flat plate does not translate easily into the local deceleration experienced in pipe flog +.

In their study, the flog over the flat plate was steady at a fixed point in space. Here, the

cascade process is statistically steady. Viewing the flow from a Lagrangian point of view,

the decelerated fluid particle travels through regions of stead)' cascade processes for which

the EVC applies fairly well. On the contra_, during a local deceleration of the flow0 the

shortcoming of the EVC will affect the predictions directly. Second, the extension of the

Hanjalic and Launder proposal rests on the condition that the irrotational contribution

J'¢,'. Rodt (198-:) in Turbulence Models and Their Application in H_draulics: a State of the

Art Re_ ie_, 2rid ed., Int. Assoc. for Hydr. Reg., Delft, p. 30
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aua_x of the sencradon term G in the E equation is (i) rcudn_l] and (ii) muhipScd by a

higher constant than the rotational pm't. In our computational scheme, the kmtatim_

conmbution is always _ncd and the presence ofa _a_dx quantity does not live the

desired n_sponsc to • local dccclcrmion _Um/'_. Nor do wc have the fra_om w just replace

aum/dx by l/urn aUm/'_.

However, following the general ideas of Rodi and Scheunn" (1986). a plausible

modificadon of the k-tmodel would be theaddition ofan decelerationoraccelerationta'm

tothegenerationterm of thet equation.One definitionof such a term is

Gcjcc_l • £ Ka

where Ka is a dimensionless acceleration parameter definedas 2

(3.37)

dumft)

Ka = l:)Um(t)3 dt (3.38)

Then, equation (3.15)becomes

+ c]flp_-[G + c3K,c] -p{:

(3.39)

where D/D] isthe substantialderivativeand c3 isa new constantwhich has to be scaled

aga./ns_expefimenta]data.

)l-lanjalicarldLaunder(1980)aswellasRodiand Schcuret(1986)usodIx)undar).layercodeswhichusualb

ncgel:ttermsli_eaUm/_.

: ]gu:h,etal(1986a)defin_anotheraccelerationparameterasK" -0._5 la alUm(t) _l Um2 )where
pU(t)3(_ ÷ 2D

;_ istheume dependentquasi.steadyfrictionfacLor.Itremainstobesccnwhethertheuseofthlsparam:icr

would y,cldbcucr results.
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Before any modification is recommended, the results of the unmodified chosen model

must carefully be analyzed. Only if a clear need for a modification is indicated, thould it be

pursued.

3.4. Summary

The k-c model discussed here is based on the eddy viscosity concept and uses two

additional transport equations for the velocity scale and the turbulent length scale. It is

given in the form of general unsteady n'anspon equations. In its derivation, no specific

assumptions about steady flow have been made. It accounts for the convective mmspon of

tarbu]ence. While the HRN version relies on the validity of the universal law of the wall,

the LRN does not. Both the HR.N and the LRN models are thoroughly tested and have

shown, especially the LR,_ version, good results for a great many flow situations. In the

derivat_or_ of the model, no specific assumptions have been made about the stead/hess of

the f]ov,. Therefore this mode] is, in principle, applicable for unsteady situations and is

used for further investigation.
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4. NUMERICAL METHOD FOR THE SOLUTION OF THE

GOVERNING EQUATIONS

The elfiptic partial differen6al equations u)gether with the bound_ cond/fions and the

assumptions given in Chapter 2 give a complete mathematical description _ the problem.

However, since this set of coupled differential equations cannot be solved analy6cally,

numerical methods are needed. Any numerical method has two basic sleps: Fu'st, the

differential equations must be wansformed to a set of algebraic equations by discretizing

them. Second, this set of algebraic equations has to be solved. In this chapter, those two

steps will be outlined.

The a_n of this chapter is (i) to document the discredzation method used here, in

particular the time discredzation developed in this study, (ii) to describe the soludon

techniques investigated and (iii) to discuss criteria for convergence.

4.1. Discretization Method

4.3.].Genera] Discretizadon

Man.,,' methods to discretizedifferentialequations have been proposed.Among themost

prominem discretizadon methods are the finite difference method, the finite clement method

and collocation method. For a more de_led overview the reader is referred to Shadid

(1989), who gives an excellen_ classification of the individual methods. According to

Patankar (1988), so far no method can be claimed to be superior. The method employed in

this work is the finite volume method which is closely related to finite difference method.

Here, the governing equations are integrated over a small control volume. For

completenessthestandardfeaturesof thistechniquewillbe omlincd.A thorough n'cannem

of thefinitevolume disc'rerizationtechniquecan be found in Patankar(1980) However. the
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validity of the method shown there is extended hem Io variable.density time-dcpcndcm

convective-diffusive situations. This extension will be shown in dcutil.

The fu'st important step for an efficient ucaunent of a set ofpm'6al diffe_.nci_ equm/on

is to cast all differential equations into one general form. Then, only one algorithm is

needed/'or virtually all dependent variables. For any scalar u'anspon variJble, the rate of

change in a comzol volume must equal the net inflow into the cona-ol volume plus dI¢ rate

of genera_on of this scalar within the conu'o! volume. The net inflow is the sum of _e

convective and the diffusive inflow. Then,we can write for the generalized scalar 0 ie an

infinitesimalconlrolvolurm1:

b(P0)

b--"_+ div(p__- r° grad 0) = S
(4.1)

Here, thesecond term on thelefthand sideisthe sum of theconvectiveand diffusive

wanspon _'ansponout ofthecontrolvolume. 1"isthe generaldiffusioncoefficientforthe

variable0 and S denotesa sourceterm which standsoriginallyfortheriteofgenerationof

thescala.,"O,However, vdthoutlossof generalitywe willtakethe freedom tocast

evc_,thingwhich does not fiton thelefthand sideof theequationintothissourcemrm.

Equations (2.l),(2.9)and (2.13)can bc recovered from equation (4.])by choosing the

appropriatequan_tiesfor0,F and S which aregiven inTable 4.1.

;ha this chapter, ;e ,,,,'ill drop the overbar for the phase averaged quanuUes. Unless other.,'i._ spexif_..d.

refcren:ew a quar,uL_willthenbe tothephaseaveragedquanu1>,
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Table 4.1:Imerpresario_ of 0.l'and S.forthe &over,fin&¢quario_

i

Name Equation @ r S

Continuity 2.I I 0 0

ap
x-Momentum 2. i 0 u _ - _'x + divOkff [IPld(u)] T)

aP
r-Momentum 2.10 v _ - _" + div(_ff [grad(v)]T)

k Pt
Energy 2.17 T +

Cp aT

Turb. Kin. Energy 3.14 k P_.L pG - pc
Ok

P_.!
Turb. Diss. Rate 3.15 c

Oc

E t 2

c]f] c2f2pT

No,_', the calculation domain f2 is divided into a number of finite control volumes

which constitute the computational grid. This grid may be different for each dependent

variable. As shown by Patankar (1980) it is advantageous to use a "staggered grid" for

each velociD' component and a "main grid" for all other variables. The values of the

dependent variables will be evaluated at the center of their respective cono'ol volumes.

Figure 4.1. shows a'typical grid and a typical control volume cluster and gives the

nomenclature for the following derivations. Denoting the flux vector of the variable ¢ for an

infinitesimaJ control volume interface as "_, equation (4. l ) may be rewritten as

a(po)
a--_+ div(_)= S

(4.2)
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v velocity control volume main grid point

x
main control volume

u velocity control volume

n interface N

V e interface

w inte .

w?_u,_h.,_-_ oE
_.Pw_.il • I'e

.... -_ .... s interface

S

Figure 4.1: The staggered grid and details of the typical corarol volumes
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This equation may be integrated in space over the finite conuo] vo4m'nel and in time as

'i ,+.. ,+.._°_+"_"+ +I JJ"o'" + +"-I II
|w 1 ! |w t |w

S dx' n:b" dr'

(4.3)

Now we express the lime integnd over any quantity z as the product of the mean value

of z during the _ne step _rnes the length of the time step .'+,I+

I+A|

f z(t) dr' • + &t
I (4.4)

To evaluatetheindividualterms inequation(4.3)a number ofprofileassumptionsmust

be made with respectto thevariationof thevariablestobe inteLn'ated.First,we assume that

themean value_,issome "mix" of theold timevalueand thenew 6me value,

i • f z..,, z + (l-f)z,
(4.5)

Here, fisa "timeintegrationfactor"which may be differentforeach dependent variable

and foreach controlvolume. For now we willassume thatfisa constantforeach

dependent vmable. Laterwe ,,,,'_Ipresentascheme which useslocallyvariabletime

inte_ationfactors.

Second, forthefirst term on thelefthand sideand fortherighthand sideof equation

(4.3)we suppose thatthequantitiesI_ and S are constantover theconn'olvolume. Then.

the integratedform of equation(4.3)can be wrinen as

1Note _at thethird&mension ofthecontrolvolumeis settounit)inthe2-D formulauon.Therefore,
dV-dA _ v,'her_dA=rdr.
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O O

Ppep" P_Op _V ÷ fl y'J + (l'ft) y.jo. fl S + (l.fl) Se
At ¢4.6)

where fi is the time integration factor for the _ equation and S denotes the volmne

integrated source term. The superscript o denotes the known values m time t, whereas the

absence of a superscript indicates the new time level t+At. The term T.I is defined as

ZJ m Je " Jw ÷ Jn " J, (4.7)

_o isdefinedsimilarlyand indicatesthenetoutflow ofthe integratedfluxesof the

v_able 0 az time t.

In thesame manner, thecontinuityequation may be integratedwith another,still

arbi_a.D.'timeimegrationfactor1"2:

PP" P_ AV + I"2T.F÷ (l-f2)ZF ° = 0
At (4.8)

where

ZFr--Fe-F_ +F n-F s (4,9)

Here, _ and YFo standforthe sum of the integratedmass fluxesatthe time levels

t*_St and t, respectively.

According to Patankar (1980) v,,e define:

Je" Fe Op = aE (Op- OE) (4.1 O)

a E : De AOPeeD "+ max[-F e, 0] (4.11)
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(4.12)

(4.13)

J,_- F,_#p =- aw (@p- #w) (4.14)

_v = D,,, A(IPe... I) + max[-F,,,, O] (4.15)

:. F.o+_.-_ (+_-+_) (4.16)

a_,= D_ A(IPe_ I)+ maxl-F_, 0]
(4.17)

F i

Pc i=_--- ,i=c,w,n,s
I (4.18)

A(IPe,I)= max[0, (l-0.IIPeil)s] ,i = e,v,',n,s
(4.19)

v,'hercD is[heinlegrazcddiffusionflux acrossa conn'olvolume interfaceand Pc isThe

Pcclctnumber associatedwilhthisinlcrfacc.

The definitionsforaN. aN°,as and aso are analogous.Furthermore itis

ppAV
i_.=--

At (4.20)

0

o ppAV

a_- At (4.21)
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S = ScAV ÷ Sp0p AV (4.22)

For simplicity, we write

]h_ = ag + as ÷ aN ÷ a s (4.23)

In order to transform equation (4.6) into an equation for the dependent variable 0,

equation (4.8) is formally multiplied by some "mix" of the dependent variable 0

qop+(l-q) (4.24)

and then subn'acted from equation (4.6). Then, after some algebra, the discretization

equation for 0 for the control volume around P becomes

(4.25)

Note that equation (4.25) does neither depend on f2 nor on f3, and that no assumptions

were made about the values of the fs. A value of 0 corresponds to a fully explicit lime

marching procedure (]rE), a value of ] to a fully implicit .scheme (F'I) and a value of 0.5 to

the well-known Crank-Nicholson scheme (CN). Since equation (4.23)isindependent of

f2,we can setf2inequation (4.8)tounitywithoutlossof generalityand substituteforI2F

--a_°- at.For thefull>'implicitscheme we define

°. sr vap. R = 5"aNB + at (4.26)
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• O

bm = S_V + ,,¢p

Then equation(4.23)can be Inmsfm'med to

[f_,p_. (_-f,),,]+_,=fl[Z¢%,_). bm ].

(4.27)

(4.28)

From thisiscan be seen thatany non-fullyimplicitformulationcan be interprcw,d asa

deviationfrom thefullyimplicitcase.

The choiceof thevalue offlisdictatedby accuracyand stabilityconsiderations.While

the Crank-Nicholson scheme isthemost accurate,thefullyimplicitscheme isthemost

stable.The Crank-Nicholson scheme ismathematicallyunconditionallystablebut wan lead

tophysicallyunrealisticoscillations.Therefore,our goalistodevelop a scheme which isas

closeaspossibleto a Crank-Nicholson scheme, but alsogivesalways physicallyrealistic

results.To get thelimitof stabilib'fortheCrank-Nicholson scheme, an analytical

perturbationanalysiscan only be performed forthe simplifiedcaseofconstantcoefficients.

In such a situationfortwo dimensions and an equidistantCanesi_ grid,itcan be shown

(Roache, 1968) thatthephysicallimitof stabilir)'isgiven by theyon Neuman analysisas

oat eat l

A,,----_+_-7y2<]
(4.29)

(4.30)

uAx vAv
--+--'<4 {4.31)
(z cx
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where a = r'/(pcp), It is evident that for an ever finer grid condition (4.29) is the most

smngent condition, since the the rime step must be reduced proportional w Ax2 and Ay2.

Computing a situation with wall turbulence requires an cxa'cmcly fine grid near dlc wall m

properly resolve the steep gradients there. In such a s/marion it is therefore _y

impossible to apply any scheme other than the fully implicit one if a vast number of time

steps is to be avoided. For a situation with varying coefficients and s nonuniform jprid,

another way to neat stability is the ru]e_, Ihat al] coefficients in equation (4.25) are to be

positive. If this condition is violated, physically unrealistic solutions may arise. It can be

shown that the term in the wavy brackets on the left hand side of equation (4.25) is always

positive, regardless of the value of fl. However, it is also evident that the coefficient before

_o may very well become negative for small values of fl. A remedy for this situation can

be formulatedand isshown next.

4.3.2. Adapnve Time Integration Scheme

As pointe,d out above,thetaskistohave a time integrationscheme which ateach grid

locationisasclosetoa Crank-Nicholson scheme as numericalstabilityconsiderationswill

alloy,.The conditionforstabilityisthatthecoefficientinfrontof0p ° isnonnegative.Dae

tothe convective-diffusiveformulationof thecoefficientsofthe neighboringpointswhich

we have adopted here,itismade surethattheyarealways nonnegazi.ve.Itcan bc shown

thatthecoefficientinfrontof0P isa}ways nonnegativeprovided Sp isformulatedprvpcrb,.

The situationismore complicatedfor@po.

An equationequivalentto(4.25)can Ix:derivedinthesame manner as shown above if

one inctividua] time integration factor is introduced for each control volume center and one

for each imerface (see Figure 4.2).

iS V. Pauanka,, zn "Numerical Heal Transfer and Fluid Fio_ ", Hemisphere Publ. Co., V,ashmgton. 19EL).

p. 3"7
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Figure 4.2: Placement of time integration factors for adaptive lime iraegration s¢heme

For brevib', we will drop the index 1 in the following and define the subscript nb for

the control volume interfaces e, w, n, s. Then equation (4.25) takes the form

fpSc_V ,+ (I-fp)S:AV ÷ E(].fnb) (aN.B_h.B)oo (4.32)
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It may, be pointed out hcrc that in order to mainu_n intcd'ace-flux consistency, the

interface time inteoadon factors are esscnual. This may be demomtratcd in the fo.owing

example:

Consider two _jacent control volumes around the points W and P

shown below.

b* W

i

0 W 0 e

interface flux _ fw Jw + (l-fw) Jw°

The integrated flux across the w-interface is fw Jw + (l-fw) Jw° ,

regardless whether it is evaluated from the W or the P control volume. If,

instead, only fw and fv were employed, the flux at w evaluated from control

volume _' would be equal to fw J_-"+ (l-fw) Jw° while the flux evaluated

from P would be fpJ. + (l-fv) jwo. This inconsistency could lead to

physically unrealistic solutions.

The next task is to optimize the individual time integration factors fp and fnb. We define

the coefficient in front of 0 °, aOo,as

a¢. _?-2;c_.f_)ag_* I_(_-tb)F°-Cl.fp)s_v
(4.33)

where fnb and fp are given an initial value of 0.5 corresponding to the Crank-Nieholson

scheme. Subsequently, for each control volume, _o is evaluated and lab and fp will be

corrected if a¢o is negative. The correction sought is

_o : Y--%a_.B. Z;_fob:b-_f,,s_v : maxI0,-ao l
O. mit_a! evaluation

(4.3-_)
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so that when _o is negadve upon its first evaluation, it will b¢ set to _ero, and fp and

fnb will be adjusted correspondingly. When a@o is positive, no action is taken. To evaluate

the corrections of the time integration factors, we will assmne that the ¢orrect_ appli_

will be the same for all time integration factors associated with one control volume, Af_ =

&fp. Then. we can solve equation (4.34) for &f as

Afp- A b-
max[O. -ag.

]F,a_ .,- rF. S_,AV
(4.35)

The Ars are evaluated for all control volume centers and interfaces in r/.. This will

usually lead to a multiple evaluation of the interface time integration factors. For the actual

correction of the time integration factors, which is of the form fncw = finitial ÷ Af, the

largest correction will be taken. This will ensure that in no control volume the stability

criterion is violated. Based on our experience, the CPU time increase due to this .scheme is

insignificant.

It has been argued that the interface rime integration factors can be replaced by the

contro] volume center factors. Using

3"fnb aNB = fP ZEaNB + F(fnb - fp) aNB

to

and Z fnb P = fP _ F ÷ _(fnb " fP) P

one can assesthequalitativeimpact of such a measure by transformingequation(4.32)
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0

iz(_b- fp_a_ +z<f.b- fp)r°} _p
t

0.36)

It can be seen that the underlined terms containing the interface lime integration factors

 ome nesligiblefor r,- isge -,Uy
given for very small time steps, but for larger time steps the omission of those wrms

introduces a considerable numerical error whose consequences are nol known.

Arguing that in an unsteady situation with sufficient time steps the coefficients w_l vary

little, equation (4.32) could be simplified ff the old time coefficients ah"Bo wen: replaced by

the new time coefficients. While this measure seems advantageous from an economic point

of vie_, this would introduce another numerical error into the discn:tized equations, it may

be pointed out that the old time coefficients are readily available at the end of each rune _ep

calculation. Since the time integration factors also depend only on knowledge of the old

time step, the entire term _o can be efficiently evaluated at the end of each time step.

Therefore, it is neither necessary nor desirable to employ this simplification.

4.3.3. The Pressure Equation

For incompressible situations, the continuity equation does not contain the the _asity.

The equation of state for an mcompn:ssible fluid only gives a n:lationship between pressure

and temperature Thus, an explicit equation for the pressure is still missing. In what

follov, s, v,.e derive auxiliary equations for pressure. Furthermore, a so-called pn:ssure
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corrccuonequadon is derived to correct the vclochy field such that it sansfies the connnuir/

equadon exacdy. Both da-]vadons arc tiod to the soludon algorithm for Wessure-velocity

coupSng. The solution algorithm employed he_ is based on • ix'oposal by Palankar

Spalding (1972) and is of the SIMPLE type. The name "Wcssm_ cormcSon equation" can

be understood from the devc]oprrl_nt of the ol'Jj_Jlal SIMPLE algorJthnl. 111the oootext of

the newer SIMPL.ER algorithm used here, this name is misleading since Inssurc is not

correctedwith thisequation.For a review of othermethods thantheone usod hen:,the

interestexlreadershould turntoPatankar(1988).

It was shown above that the time integration scheme for the continuity equation does

not influence the final discredzation equation for O. Therefore it may be postulated here that

the latest velocity field shall always satisfy the continuity equation (i.e. f2=l). The

discretized continuity equation is then

aL- a° + (puA) e - (puA)_. + (pvA) n - (pvA) s = 0 (4.37)

This equationwillnov,'be transformedto yieldan equationforpressure.Independent

of equation(4.25),(4.28)or (4.32),thediscretizationequationforthedependent variable

atone pointinspace can be wrinen as

Or,pep --" (Y.EOE+ CLWOW + O.N¢ N + (X$0s + p (4.38)

where thecz'sand [3areobtained by comparison with one of the above mentioned

equations.On thisbasistheu-velocityequationcan be writtenatpointeasl:

_--- • O OO.eLI,, EO.nbUnb + 13+ f]Ae(Pp-P E) + (l-fl)Ae(Pe-P E)
(4.39)

lNot_thatthethecoefficientO,erepresentst.heunder.relaxedcoefficientifunder.relaxationwas done tothe

ueequauon beforethepressureequationisentzrcd.The same appliesto[3and d.
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Here the pressure] has been taken out of the source mrm [3Ind nv._md in the same

fashion as all other terms c,onu_ined in $c 2. From this, In explicit equalion f_ _ w, lociv:

at e can be obtained

u¢ = ue + fld+ (Pp'PE) + (l-f]) de (P;-P;) (4.4O)

with the definitions for the pseudo-velocity i]

_t s

Ea_bOnb ÷

ac (4.41 )

Ae

and thequantity d¢= -- (4.42)
ctc

Equation (4.40)can be used toeliminateu¢ and tointroduceP inequation(4.37).The

same can be done fortheothervelocitiesinequation(4.37).The rcsul_ngequationisthe

pressure equ, ation •

CtpPp= _ (CeNt3PNI3)+
(4.43)

where

a'tcB = fl(PA)nb dnb
(4.44)

1Note the double meanin G of "P" here: the subscript P stands for the grid point, whe.,,e._ otherwise P

denotes the appropriate pressure u_rm (cf. Chapter 2).

2From here on be v,ill restnzt d_scussion to a s_ttally uniform time discretizauon scheme _ return to the

subscnpt "}". A aen_auon for an adaptive time integration scheme is $traighL fo_ard I_t no_ n_ded a._
shown later
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" _J_ aNB (4.45)

and _'1_ is defined equivalently Io equation (4.9).

(4.46)

4.3.4. The Pressure Correction Equadon

After the velocity field is computed, it will sadsfy the momentum equations, but not

necessarilythecontinuitye_quafion.Thus a corre.cfiontothevelocityfieldshallbe derived

which ensuresthatitsatisfiesthe mass balanceexactly.Define a correctiontopressureP

and velocity u as

p = p* + p' (4.47)

I *

u=u +u (4.48)

and equivalendy forv.The starredquantitydenotes thequantityaftersolutionof its

a'anspon equation, u' denotes the velocity correction sought and F stands for the

correspondingpressurecorrection.Equation (4.39)can alsobe writtenforthe starred

velocityu*. Subtractionof thisequationfrom equation(4.39)yieldsan equationforu'as

O* O °

(zeu_---_ anbU'nb+ fiAe(Pp-PE) + (l-fl)Ae(Pp-P E ) (4.49)

However, the old pressure field is presumed to be the known and exact; hence there is

no correction for it. For simplicity, the f'u'st term on the fight hand side is omine.d. Nov.' an

equation for U'e can be formulated:
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u_= fl de (P'P" PE)

Similarly, for Vn'

,,_=f,_ o'p- PN) (4.$1)

With equations (4.50) and (4.51), u' and v' can be eliminsted from equation (4.48)

iLs equivalem for v, and the resulting expressions for the velocities can be subsdvated into

the continuity equation (4.37). This yields an equation for the pressure correction P'

_pP;--£ %BP_,-B* P (4.52)

where

= a_- a,- _F" (4.$3)

and CZNBis defined as in equation (4.43). The sum ,T.F"is defined analogously to

equation (4.9) where the ind.ividual flows are evaluated with the starred velocities. Note

that the right hand side of equation (4.53) is the continuity equation. In case of

convergence, _ will tend to zero and is therefore a measure of convergence as will be

pointed out later.

4.3.5. The Velocity Correction F_.,quadons

Based on equations (4.48) and (4.50) and knowing the pressure corrections, the

veloci_' filed can be corrected according to

=,==;+f_d=(Pp-PE) (4.54)
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4.3.6. On the Con'ect Choice of the Time Integration Factor for the Auxiliary Equmions

So far the pressure and pressure correction equations have been I_,ated emirely

equivalent to the general _ equation. This uv,atment lead to the factor f! in the definition

equations (4.44) of the neighbor point coefficients and in equations (4.54) and (4.55) for

the velocity corrections. A consequent utatmem of S in the equations for u and v

introduces fl in equations (4.39) and (4.49). It seems natural that the same values for fl

should be used v,ith the pressure and the pressure correction equations as with the genera]

¢_equation. While implementing this scheme and testing it for laminar oscillating flow, this

was indeed done initially. However, a thorough inspection of the predicted pressure

showed large disagreement with the analyticaJ pressure prediction for fully developed

laminar oscillating flow, even though the computed velocities were very close to the

analytical ones. The disagreement turned out to be an oscillation mound the sinusoidally

varying axial pressure distribution. A number of tests have been carried out to examine the

influence of fl on the pressure prediction. It turns out that the best predictions are obtained

when (i) both, the pressure and the pressure correction equation are Ireated as fully implicit,

(ii) the velocity corrections are done fully implicit and (iii) the pressure source term in the

momentum equations is treated as fully implicit (see also Fig. 4.4). This constitutes

essentiaJly a "staggered grid in rime". As in the space grid, the velocity "'time grid" differs

from the pressure "rime grid" unless a fully implicit scheme is used throughout. The code

was implemented according to these findings. Since the auxiliary equations will finally be

u'eated as full)' implicit, the discussion above was formally can'ied out for locally uniform

time inte_"rationfactorsonly.
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4,2. Solution Method

The set of algebraic disc_tization equations can be mnsEtoted one large matrix which

could be solved by a direct solver. For instance Kelkar (1988) used the Yale Sparse Man'ix

Package to solve the flow and heat Iransfer around a square cylinder. While this has

advantages for the coupling of the equations, this technique would be ineWtcient _ for

large mamces it is generally more economical to employ iterative techniques. F_,

the equations are, in general, nonlinear. Even if a direct solver was used for the enEre set of

equations, the coefficient mad-ix would have to be updated after each solution and solved

again, until convergence was achieved. The intermediate solutions during this convergence

are exact solutions only to a preliminary coefficient matrix, which is an unnecessary effort.

Also, an iterative technique often more freedom to Ireat the source terms in the equations.

Solving turbulent flow with a k-c model involves the solution of two equations for always

positive variables. In the course of the solution for those variables it is very important that

their intermediate vaJues never become negative. Inlermediate negative values for k and

would render their solution meaningless. A technique to prevent this is outlined by

Patankar (1980) and requires the freedom to formulate the source terms with flexibility.

This flexibility is not given in a direct solution scheme. Therefore it is clear that iterative

techniques are more suitable.

An iterative solution method may be divided in two pans: First, the _am_ent of the

nonlinearityand thecoupling techniquebetween theindividualphysicalequations,and

second,thesolutioniechniqueused tosolvea setof linearizedalgebraicdiscretization

equations.For the former,the SI_PLER algorithm(Patankar,1980) was used with an

enhancement proposed by Recktenwald (1989).For thelatter,a techniquewas used which

proved to be robustand most economical.A discussionof thesefeaturesfollows.
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4.2.1. Solution of the Nonlinear Equations

For the solution of the nonlinear equations, the SIMPLER algorithm {'Paumkar, 1980)

was used. In this algorithm, the discreelzed differential equations are solved _lUentially.

With the latest velocity, density and viscosity fields, the coefficient n_ix of the pressure

equation is determined and solved. With the new pressure field, the new velocity field is

computed. Next, the pressure con'ection equation is solved, and, with its help, the

velocities are corrected such that the con_ed velocity field satisfies exactly the continui_

equation. Finally, the equations for the remaining dependent variables are solved. When

this is completed, the process is repeated a sufficient number of itermions until an overall

convergence is reached. These iterations wil] be termed "nonlinear" iterations in what

follows.

Since thedifferentialequations;obe solvedareingenera]nonlinearand coupled,itmay

be necessarytounder-relaxtheirsolutioninordertoachieveconvergence.Examples of

under-relaxationtechniquescan be found inPatankar(1980),Kelkar (1988)and

Recktenwald (1989).Generally,the strongertwo equationsarecoupled,themore they

must be under-relaxed.The degreeof under-relaxationdeterminesthe speed of

convergence of a solution.For theSIMPLER algorithmitisadvantageous tohave a simil_

convergence speed foreach equationsolved.An example of two stronglycoupled

equationsaretheequationsfortheturbulentkineticenergy and theturbulentdissipationram

inthecase of turbulentflow.Recktenwald (1989)observed inhiscalculationsthatwhen

the solutionof thepressure-velocitycouplingoccurredmuch more rapidlythanthe solution

of thek-c coupling,the scheme diverged.Itisthedi.fferencein under-relaxationfactorsfor

the velocityand pressureequationson theone hand, and forthek and l:equationon the

other,not theirabsolutelevel,which isresponsibleforthisdivergence.Even seemingly

smalldifferencesinthevaluesoftheunder-relaxationfactorsmay effectivelyconstitute

largedifferences.One remed,vtothisproblem would be tosettherelaxationfactorsof all

dependent variablesa_thelowest necessa.ryvalue.This,however, would be reD'
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wasteful. Alternatively, Recktenwald (1989) proposed an additional levelof iterations in

which the strongly coupled equations (e.g. k and ¢) are solved repeatedly one after the

other, each time with updated coefficients. After • sufficient number of such exea

iterations, the SIMPLER algorithm is continued. This technique was originally introduced

especially for unsteady flow problems; it was tested during this research for steady

turbulent pipe flow and found that in steady pipe flow this enhancement also speeds up the

nonlinear convergence considerably. A "sufficient number" of these iterations was found to

be typically between ] and 5; I at the beginning ofthe computation and 5 near

convergence.

4.2.2.Solutionof thel..,inearizedAlgebraicEquations

For each gridpointand dependent variable¢ an equationmay be writtenin the

linearizcdform

avep ,=%e E + awOw ÷ %% + ase s + 13 (4.56)

The coefficientsa and [3can be determined by comparison with equation(4.32).For a

full),implicitsteady-flowscheme, thecoefficientsareidenticaltotheones given in

Patankar(1980).The coefficientsoftheequationsforallgridpointsforone dependent

variable0 constitutea man-ixA, so thattheproblem can be v,vinen as

A _ ==b (4.57)

Many techniquesforan iterativesolutionof thisequationareavailable.Some have been

testedduringthiswork fortheireffectiveness.Specialcarewas taken toensurethatthe

codes used could be full,,'vectorized.The codes testedwere+

a)an unvectorizedtri-cl/agona]roan'ixalgorithmCI"DM.A) appliedlineby line

]Fo:a generaldcscnpuon ofthelineb) hne method,seae.g.Patankar(1980).
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b) a vectorized, inverted "rDMA applied line by line

c) a vectorized, inverted red-black TDMA applied line by line

d) a vectorized TDMA line by line method using a Cray-SCK.I]B subrouti_ _o

evaluate dot products of vectors.

e) a vectorized SSOR _gorithm

The test problem was a steady turbulent pipe flow on a 23 by 23 grid. The vectorized

SSOR algorithm prove,d to be extremely sensitive to the ¢¢m'ect choice of the over-

relaxation factor. For an over.relaxation factor greater than 1.2, the solution diverged

independendy of how accurately the equations were solved. The other four methods gave

the following performance in CPU time bared on the f'_t method:

a) 100% b) 45.5% c) 66.7% d) gl.2%

The difference between b), c) and d) can be explained by the varying influence of the

relative short vector lengths (21 elements). Method b) and c) should break even when the

vector length is greater than 128, given the present vector length of 64 words on the Cray

:2 computer. Similar])', the use of the SCILIB subroutine pays only for very large vectors.

The accuracy ) of the solution achieved after a fixed sweep through the domain was highest

for method a) and about the same for b), c) and d). Due to the coupling and nonlinearity of

thephysicalequations,only a limitedaccuracy isneeded foran intermediatesolution.Wid_

thisinmind, method b) was used forfunher work.

Other,more sophisticatedmethods likepreconditioned conjugategradientmethods

might lead to in_e.ased efficiency and accuracy. However, the optimization of the solution

algorithm was not the subjectof this research.

How accurately shall the linearized equations be determined? When can the ovcnll

solution process be terminated? These questions will be discussed next.

Im_sur_d m terms of the residuaJOm=xwhich is defin_ belov,
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4.2.3. Linea;, Nonlinear Residuals and Convergence

The residual of the linearized discredzsdon equadon (4.56) can be expressed

.kl _k !
(4.58)

where aNB k, op k, and _ arc the coefficients af the lincarized equations at • nonh'near

iteranoa k, _,B I, OpJare the values for the linear izerarion I within the soludon algorithm.

_'_ is the residual corresponding to k nonlinear and I linear iterations. However, the

absolute value of r_ ! does not give a sure determination of whether the residual of an

(frequently the largest conn'ibutor in the sum on the right hand side ofcquadon (4.58)).

Therefore we sca.]e each residual to determine its relative importance and define

.,k]

rp

(4.59)

This scaling normalizes the coefficient roan'ix with respect to their diagonal elements.

This scaling form offers the advantage, other than described in Reckaenv,'ald (1989), that

the values at a particular point in the domain can be prescribed without rendering the

residuals meaningless. The prescription is typically done by assigning a huge number to

coefficient cop and assigning this huge number times the desired value to coefficient 13.

Since there is one rk_pfor each ncxia] point in f/and dependent variable 0, we define a

kl which contains the individual residuals as coordinates. The Euclidianresidual vector "_PV
kl

norm Rpc , of the vector is a measure of the overall error of the computed soludon of 0 in _,

Pe m II Rpo It = (¢1)2

all gridpoints (4.60)
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During consecutive linear iterations within the solu_on algorithm, I_ ooefficients

remain constam and, in the limit, R_ will approach zero. However, it is uneooeomi_ w

drive the residual to zero at this point because the equation soIv_l b only the lineariwd

form of [he actual, nonlinear equation. A peffcc[ SOlUtion for the 1/_ equadom may

still be fat away from the solution of[he nonlinear equations. The criterion m determine

whethe_ Rp_ is small enough to terminate the linear iterations was

R kl

-_sS,
Rp0 (4.6 l)

k0isthe so-callednonlinearresidual,and 8_ issome, userspecified,smallwhere Rp@

number. Recktenwald (1989)and Van Doonnaal and Raithby (1984) have discussedthe

choice of 8¢ indetail.Here, 8_ was chosen between 0.Iand 0.3.

After completion of the linea.," solution of one dependent variable, [his process is

repeated for the other dependent variables.

Table 4.2: Typical Values of 8_ in the computations

k c
0 u v Ix: p1

8.0 0.3 0.3 0.15 0.15 0.2 0.2

kO
The nonlinearresidualRpo isobtainedby evaluatingequation(4.39)upon enm'ing the

solution algorithm with the latest set of coefficients. The series of the nonlinear residuals,

k0 from one nonlinear iteration Io the nexl is an excellem measure of [he overall,Rpo,

nonlinear convergence of a variable ¢. ]f this number becomes sma.I] enough (e.g. 10 "6) for
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all dependent variables, then a solution at this time step is ob_r_l and one can pmc¢_

with the next nrr_ _.

Another measure of nonlinear convergence is the n_timum waled en'ar of the

continuity equation, Om_, at any point in [1:

o, zv"]]max[abs[ a,- a t

Om_ maximum flow rate across any control volume interface in £) (4.62)

When Omax reaches a value of less than lO"4, reasonable nonlinear convergence is

generally obtained. In fact, Omax is probably the single best overall measure of

convergence. The nonlinear residual for the u.cquation and smax are strongly correlamd so

that usually it suffices to monitor only Omax. However, it proved useful to monitor the

nonlinear residuals for the k and z equations, because it is possible to reach an intermediate

solutionforwhich the continuityequationan_ithemomentum equationsareratherwe//

satisfiedbut forwhich the k and eequationshave notyetreached convergence.

4.3. Summary

In thischapter,thegeneraldiscretizationequationswere developed.A locallyadaptive

time integrationscheme was developed which v,illbe especiallyhelpfulinsituationswith

wallturbulencewhere highlynon-uniform gridsareusuallyused.While itismore

elaboratetoimplemenl thisscheme thanafullyimplicitscheme, theadditional CPU lime

costismarginal.An enhanced SIMPLER algorithmforthen'eatmentof stronglycoupled

equationswas outlined.A vectorizedline-by-linemethod was found to be a robustand

efficientsolverforthelinearizedequations.Criteriaforthelinearand nonlinear

convergence am established and d/scussed.
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PART I1: ANALYSIS AI_rD RESULTS OF THE FLUID MEO/ANICS PROBLEM

$. PREDICTIONS OF FULLY DEVELOPED TURBULENT PIPE

FLOW UNDER STEADY CONDITIONS

In orderto verifyboththeturbulencemodel itselfaswellasitsprogramming, a jeries

ofcomputationaJtestswere made tocompare theprcdi_ons forfullydevelopedpipeflow

az two differentRe numbers. One ofthebenchmark paperson turbulentpipeflow isthatof

Laufer(1954),where thedetailedcharacteristicsoftheflow atRe numbers of 50,000arid

500,000 areinvestigated.Both,theturbulencemodel ofJones and Launder (I972)and the

model of Lainand Bremhorst (198l)were tunedtomatch theselofdataprovidedinthis

paper.To verifyour solutionathighRe numbers,predictionsatRe = 50,000 arecompared

withthedataofLaufer(1954).The paperby Kudva etai.(1972)providesdataon pipe

flowatRe = 6000, which willbe thesecond Re number forour test.

5.1. Predictions of the High-Reynolds Number k-c Model

The high-Reynoldsnumber model (HR.N) computationswere done witha 23 by 23

gridwi_ afreermesh nearthewail.The L_ ratiowas 150 forallcomputations.Figure

5.1shot'sthepredictionsforRe = 501300.Itcan be seenthatthepredictednormalized

velocityisconsistentlytoohigh.But sinceratherfew gridpointswere used here,this

effectmay be due inparttothegridsize.From Fig.5.7itisclearthattheuse ofthe HRN

turbulencemodel fora Re number aslow as6000 isinappropriate.
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5.2. Predictions of the Low-Reynolds Number k-¢ Model

The low.Reynolds number model (LRN) computations were nude with • 33 by 51 Igrid

with densely spaced grid points near the wail For • Re number of _) 000, ca. 7 ffrid points

were placed within the viscous sublayer (y+ _; 11). For Re = 6000, this number was 17.

The L,_ ratio was 150 for Re = 50 000 lind 250 for Re = 6000. Figure 5.I shows thal the

computed data generally follows the law of the wall, but underpredicts u'¢"$1ight]y. This is

due to a slightly too high u_ which in turn may be amibuted to the relatively sanall number

of grid points in the viscous sublayer. Figure 5.2 compares the computed local friction

coefficient cf.x for Re = $.OxlO 4, and a TI (turbulence intensity at the inflow) of 10%, with

the experimental value for fully developed flow. Thereafter, the incoming slug flow

develops swiftly as the rapidly decreasing cf indicates. The minimum at about x/D=10

corresponds to the beginning of the development of the turbulent flow sn'ucture. The fully

developed value is slightly higher than the experimental value. Figures 5.3 and 5.4 show

fairly close agreement of the measured and predicted turbulent kinetic energy. Figures 5.5

and 5.6 show the comparison for the turbulent dissipation rate. In Fig. 5.6, the predictions

are compared with Laufer's data as shown in the paper by Lain and Brernhorsz (1981) as

well as with Laufer's data as taken from the the original paper by the present author. There

is no explanaIion for the disagreement of the two sources. However, the predicted data is in

satisfactory agreement with Laufer's dma. Fig. 5.7 compares the predictions with the data

of Kudva (1972) and the law of the wall. As can be seen, the experimental dma at Re =

6000 does not follow the logarithmic law of the wall. The measured data lie consi_emly

above the log law. The predictions correctly reflect this Irend. As in the case for Re = 50

0(O, the predictions slightly underestimate the normalized velocity. Finally, Fig. 5.8

compares the predictions for the turbulent kinetic energy. Since Kudva et at. (1972) only

report daza for u '2, k can only be estimated from it. Fig. 5.8 shows one such estimate

using the same razio of u'2/k az each radial location as in Laufer's data. For completeness.

also Laufer's da:a are shown. The prediction are in bet,,,,een the experimental cu.,'ves.
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Fig. 5.1: Predictions of

full)' developed turbulent pipe

flow at Re - 50 000.
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Fig. 5.3: Turbulent kinetic

energy for full)' developed

turbulent pipe flow at Re ,-

50O00.
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Fig. 5.5: Turbulent dissipa.

tion rate far ruth" developed

turbulent pipe flow at Re ,,

5OO00.
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Fig. 5.7: Normalized velo.

city predictions for fully

developed turbulera pipe.flow

w R e =6000.

Fig. 5.8: Turbulent kinetic

energy for fully de_'eloped

zurbulent pipe fto_ at Re =

6000.
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6. TRANSITION PREDICTIONS

In osculatory flov.'s at sufficiently high Remax numbers, the flow reix_uxlIy muleqF)es

u'ansifion from laminar to turbulent and vice versa. The actual Reynolds number at which

U'ansition occurs under those conditions is surely influenced by accelenuioo or decelenifion

effects and is most likely not the sarnc as use critical Reynolds number for steady flow in

smooth pipes, 2300. Even though our goal is to predict turbulent oscillmory flows, it is

clearthata turbulencemodel which cannotpredictu'ansitionforthemuch tlmplercase of

steadynov.,has no promise ofpredictingu'a.nsitioninoscillatoryflows.

The objectiveofthischapteristoinvestigatetheproposed turbulenceraodelforits

abilitytopredictu'ansitionin steadyand inacceleratedpipeflow.This chapterpresentsthe

resultsof a seriesofcomputations which examine prima,,'i}ythefollowingfourquestions:

I) At what Re number iswansitionpredictedforfullydeveloped steadyriot'?

2) What istheinfluenceof theinflotboundary conditionsfork and £ on the

predictionof thisu'ansition?

3) What istheenn'a.nceregionpredictionformoderate Reynolds numbers (<10000) ?

4) How do thepredictionscompare with experiments?

5) How does accelerarlonaffectthepredictions?

6.1. Experimental Observations of the Entrance Region

It iswellknown that thehydrodynarnicalentrancelengthinlaminarpipe flow is

x/D = 0.05 Re

Ho,_.ever, there is not a consensus on the entrance length in turbulent riot's.

CorrLmonly.t'espeak of enu'ancelengthas thatdistancefrom theeniD'_ong the riot
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direction where the velocity profile changes. Wang and Tullis (1974) distinguish 3 different

lengths:

I) The length at which the wall shear stress becomes fully developed.

2) The Icnglh at which the boundary layer w,awhes the centerlinc.

3) The length st which the centerline vcloci_ becomes fully developod.

According to Nikuradse (1932), the entry length is nearly independem of the Reynolds

number and is 40 to 50 diameters. This is in good agreement with the findings of Wang

and TuUis (1974) who measured an x/D of 49.$. Deissler (1950) reports that the flow at the

centerline was still developing at x/D=100 for a rounded entrance. He also found that the

flow close to the wall developed to its final form over a shorter disumce from the entrance

than required by flow in the center. In a later paper (1955) he quantifies this finding staung

that the fricrlon (factor) is approximately fully developed after I0 diameters. Bowlus and

Brighton (1968)verifythisand inadditiongivean analyticallyderivedrelationforthe

velocit3'enu'ancelengthas

x/D = 14.25 logl0 ('Re)- 46.0

Inone of the benchmark papersabout turbulentpipeflow L,aufer(1955)measured fully

developed flow ina round pipeata locationof circa50 diameters.And, based on his

review of lilcramre,Truckenbrodt (1980)stalesthefollowingaveragerelationship

x/D = 0.6 Re 0.25 .

This ove_,iew clearlyshows thatthe"lengthof theeno'anceregion"in fullymrbulenz

pipeflow isdebated inliteraturet.Itisnot surprisingthatforu'ansi6onalpipe flow even

lessisknown about theeno'ancelengthof theflow.A detailedcomparison of theenu"y

length computations with experiments was therefore not attempted.

IOne rca_n ma) bc thaldifferentreseat;hershad differentboundar)conditionsfork and z.whsch _c noL

norma]l)reportedoreven mcasurr.d
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The computational domain was chosen to be a su_Jght robe with LAD _; 500. In view of

the discussion above, this was considered to b¢ long enough to 1insure that fully devcbped

con_fions always exist at the end of the tube. Even if the model w_e Io wcdict/mainar

flow for a high Reynolds number, the flow would be fully developed at the end of the pipe

for Reynolds numbers up to lO000.

6.2. Boundary Conditions at lhe Inflow

For isorropic turbulence, the turbulence intensity at the inflow can be defined as

T1 1 -- (6.1)
t,lrn-.,an

The specification of a turbulence intensity at the inflow boundary poses no problem.

However, the specification of the incoming turbulent dissipation rate E is a problem.

Generally, data about k and £ at inflow are not reported by experimentersL Therefore,

assumptions have to be made and their impact on the predictions should be assessed. One

option of specifying £in is

(6.2)

where _ is some functionto be determined. It is evident that _;is like an inverse

turbL)lence Reynolds number Ret

k 2

Re, = p _ (6.3)

] Se_ e.g Laufcr (1955:. Nikar_.qa (1933), I_issler (1950)
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From thedefinitionof the iso_pic turbulent viscosity we know that

c_ p k_

It is clear that with increasing Re also _t will increase. Therefore we use

k2

and v,'e define _(Re) as ]/'4Re. This will give a turbulent viscosity at inflow of

(6.4)

(6.5)

(6.6)

At a Re number of 106,thisrillleadtoa turbulentviscosityof 90 timesthe laminar

viscosity,whereas fora Re of 10 000, thisvalue is9.Around thecriticalRe number of

2300 theinflowturb,alentviscositywillbe ofthe same orderof magnitude as thelaminar

viscosity.IfRe isfurtherdecreased,the numericalturbulentviscosityattheinflowwill

become lessand lessimportantcompared tothe laminarviscosity.This,of course,iswhat

we requirefrom physicalintuition.

Another option in specifying ¢in is to assume that at inflow, the rate of production of

turbulent kinetic energy is in equilibrium with its dissipauon rate,

G = _ (6.7)

The production rate is defined as

G=- a-;-= a--;
J .I (6.8)
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A simp]e closure for %is

j i (6.9)

Near the wall

aE

(6.10)

Defining the friction velocib" _

u_2 = _o/P (6.11)

we ge_

(6.12)

The model for[heisotropicturbulentviscosityis

(6.13)

With this.equation(6.10)becomes

k:
%=%P ¢ ax

J (6.14)

Elirr_narin_._r_i_h (6.'7)and (6.11)yields
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•uz ,, cp 0-25 k0"5

Combining (6.4) with (6.10) and (6.14) yields

(6.15)

(6.15)

Using the universal law of the wall, we get

_E

(6.16)

The choiceforYin iseitherone representativelengthscalefortheinflow(e.g.the

radiusof the tube)or thedistancetothewall.This,however, willleadto a singularityoft

atthe walland a ratherlow valueatthe centerline.As a consequence,theturbulent

viscosityatinflowwilll:)caksharplyinthecenterand be very toy.'nearthewall.

A thirdway tospecifyt istoinferthenatureof l.ttfrom expcrimemal dataforfully

developed pipe flow.Thereafter,thefrictionvelocitycan be expressedas

0.197 Re °'s'75Re -<4-104

0.1St Re °'9 Re •4"104 (6.17)

From Schlichting (1980), Vt,max/(U, t R) = 0.09 = cp..

With (6.17) this can be re_,vitten as

0.1 Re °s75 Re<4.104laL= % la
0.076 Re °9 Re > 4-104 (6.18)
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In order to have lat as a function of the turbulence intensity at the inflow, we define

laL,, c_ la Tl Re °'t_5 (6.19)

which gives a function _ when put into (6.2) of

_(Re) -- 1
TI Re °'s_5 (6.20)

It is this formulation that we have adopted for the LRN computations.

6.3. Transition Predictions of Quasi-Steady Flow

The high Reynolds number version of the k-_ mode] cannot account for any transitional

effects, h incorporates only the turbulent riscosity and neglects the influence of the laminar

viscosityentirely'.This isthemajor reasonwhy a high-Reynolds number turbulencemodel

isnot used inthisstudy,.

Concra_.'tothehigh-Reynolds number turbulencemodel, theLRN versioncan

potenr_ly predictuansicionto turbulenceand relaminarizationsinceit rakestheeffectof the

molecular viscosityintoaccount where necessary.Ithas been shown (.]onesand Launder

(1972),Launder and Spalding (1974),Schmidz and Pamnkar (1987))thatlow Reynolds

number models are .capableof predictingtransition,atleastqualitatively.Schmidt and

Pazankar (1987)investigatedthepredictionperformance of themodels of Jones and

Launder and ofLain and Brcmhorst insteadyflow over a fiatplate.The),found _m the

startinglocationof transitionwas predictedtoo early'and thatthe lengthover which

transitionoccurredwas underpredicted.Jones and Launder (1972)reporttheperformance

of theirturbulencemode] forfullydeveloped pipeflow Itcan be seen thattheirmodel

predictstransitionata too low Reynolds number of 1600 as wellas a too narrov,,range of

Re over which lhe transitional state of the flo_ prevails (Figure 6.1).
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Fig. 6.1: Transition prediction for fully developed pipe flow with the model of Jones and

Launder (1972).
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Fig. 6.2: Transition prediction in fully developed pipe flow with the model of Lain and

BremJ2orst (19S1).
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In this study, two series of transition tests were performed, one for 10% turbulence

intensity, another one for 0.5%. Most of the tests were perf_ with a grid of 33"51

srid points, where the ax/al grid lines were equally _paced and lhe ndial lldd _ we_

densely spaced near the wall. This grid was sufficient for the moderate Reynolds nmnbers

under investigation and still provided reasonable convergence rates ( as compm_ to htrger

grids).

Inthefollowing,we definetransitionof thefullydeveloped flow is thepointwhen the

computed frictioncoefficientatthedownsnv,am end of@_ pipe sum,sIodevmte from the

corresponding laminar value. According to this definition, both rests 10ve the _ result

independentof theturbulenceintensityattheinflowand arcinlinewiththefindingsof

Schmidz and Palankar (1987) for transition predictions for flow over a flat plate and Jones

and Launder (1972) forfullydeveloped pipe flows.Figure6.2 shows theresultsof the

frictioncoefficientcomputationsas wellas themeasurements of Nukunu:Lse(1932).As can

be seen,transitionispredictedata Re number of 3450 which correspondstothe upper end

of theRe-number n"ansitionrange shown by Nikuradse.

The Re number range over which transitionispredictedismuch smallerthanmemured

forexample by Nikuradse (1932,ca.2 Reef).At one pointinthesequence of

computations,the prcdictcclcfvaluesjump sudden])'from thelaminarvaluesof 16/Re to a

turbulentvalue when the Re number isincreasedslightly.This does not properlyreflectthe

realinzerrnittemtransitionprocesswhich occursover a ratherbroad band of Re numbers.

One must bear in mind that the results shown in Fig. 6.2 arc obtained for LJD ratiosof

up to500. Ina Srirlingengineheatexchanger,and intheexperimentaltestrigfor

oscillatingflow.researchattheUniversityofMinnesota, theI./Dra6o ismuch less.Itis

thereforeofgreatpracticalinteresttoexamine thepredictionsof themodel with regm_:lto

thedevelopiagflow.For Io_ turbulenceintensitylevelsatthe inflow,theusual laminar

flov,behaviorwithlarnina_entrancelengthand parabolicfullydeveloped profileis

prr,,dictc_ up to a Reynolds number of 3450. At high Re, the flow will first develop as in a
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laminar flow. At some point downslrem_ the flow will becoJ_ unstable and undergo

transitionfrom laminar to turbulent. Since this mmsi_:m takes _ over • very snail axial

distance, we will speak of • _LS_nyrOM. One enmple of such • mmsidoo front is

shown in Fig. 6.3. Further. it is interesting to note that the predict! mmsilioo occurs

simultaneously over the cross section. The location of _ uansition f_n! depends largely

on two factors: (i) the level of turbulence intensity at the inflow (TI) and ('ti) the Reynolds

number.

Turbulence intensity dependence. As the turbulence intensity is decreased, the

mmsidon front moves downstream. In the limit of• very low turbulence intensity the

transition front approaches • maximum downsu'eam lo_tion and does not move any further

(see Fig. 6.4). This can be explained from • physical or numerical point of view: In

addition to the imposed turbulence intensity st the entrance of the tube, in real pipe flow

there are always disturbances downstream. If the Re number is sufficiendy high, these

disturbances will cause the flow to become unstable even if extreme caudon is exercised to

have a very low level of turbulence intensity at the inflow. NumericaJ approximations also

act like physical disturbances. Even if we turn off the imposed turbulence intensity, there

will be a residual level of "numerical disturbances" in the domain which will cause

transition. A lower turbulence intensity also makes the transition front steeper, more

abrupt.

As mentioned above, the results for the fully developed flow are independent of the

turbulence intensity •t the inflow. However, in the developing region in the u'ansidonal Re

number range the turbulence intensity level has a decided effect on the flow for most of the

length. At Re -- 3_150, the flow well downsu_'.am will be predicted ultimately to be laminar.

For a TI of 0.5_, the flow follows a normal laminar behavior throughout. Increasing the

TI •t this Re number creates a region where the flow looks very much like • turbulent flow

over much of the tube length. For example, a TI of 10_ will lead to a seemingly fully

developed turbulentprofileatan x/D beyond 100,but aTx/D ,-250, theflow suddenly

relaminarizes(Fig.6.5 and Fig.6.6).This impliesthat,cono-4ryto thefull),developed
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Fig. 6.3: Transition front example for a Re number of 6000 and a turbulence intenxio" az

inflow of 0.5%.
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Fill. 6.4: Influence of the turbulence intensir)" at iroClow on the location of the transition

front at Re = 6000: normalized centerline velocir)" vs. axial distance.
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case, the developing region of the flow at moderate Re is strongly affec'u_ by the

condition at inflow.

Reynolds number dependence. As the Reynolds number is in_, the

n'ansition front moves upsn'cam, Fig. 6.'/. At higher Re numbers (e.g. >5(X)0) and not wo

low turbulence intensities (e.g. >2%) the mmsit/on _,)nt can hsrdly Ix sea_ any more.

Then, n'ansifion takes place practically insumlaneously atthe entrance of the tube. This is

probably the reason why the existence of such a mmsition front is not mentioned in _' of

the reviewed experimental papers on turbulent pipe flow.

An interesting situation occurs around the nominal value for _ansition for the fully

developed flow.When theRe number isdecreasedfurther,then'ansitionfrontmoves

downstream. With very low turbulenceintensityatinflow,the locationof the n'ansitioa

frontstandsatan x,/Dof around 300 forRe = 3470. When theRe number islowered

furtherto3460, the transitionfronthard]>'moves downsn'earnany more, and immediately

afterthe fronttheflo_ startstorelaminarize,Fig.6.8.The finalprofileatthisRe number

looks vet3'much likea normal laminarprofile.Here,the n'ansitionfrontlooks likea "cut"

intoa laminarflow.Lowering theRe number even furtherjustreducesthis"cut"untilit

complete]>'disappearsatRe = 3450.

Initialguess dependence. At ver_.low inflow turbulenceintensities,the predicted

locationofthe n"ansitionfrontisalsoaffectedb.vthechoiceof theinitialguess fork and t

in thecomputationaldomain. Here, theinitialguess fork isunder investigation.A typical

initialguess fork and t insideof thecomputationaldomain isjustlikethespecificationof k

and _ attheinflow'.For theresultsshown inFig.6.9,the initialchoiceof the turbulence

intensity inside of the domain was varied while the TI at inflow was held constant. The

results can also be explained with the action Of "numerical disturbances" as above. Each

initial guess also represents an initial error and leads to a particular level of numerical

disturbance In the near viciniLv of transition, both the laminar and turbulent solutions for

the equations are permissible and equally likely, In realib', such a situation would be
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Fig. 6.7: Influence of the Reynolds number on the location of the transition front for

0.5% turbulence intensiD" at inflow: normalized centerline veiocio" vs. axial distance.
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Fig, 6.9: Initial guess

dependence of theprediction

of the traditionfrontfor low

turbulenceintensityat inJlow

(0.5%) and Re = 6000:

normalizedcenterlinevelocity

vs.axialoh'stance.

Fig. 6.10: Initial guess

dependence of the prediction

of the transition front for

higher turbulence intensi_ at

inflow (2%) and Re = 6000."
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vs. axial distance.
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observed as intermittent. In this test we simulate a steady state situation, and the !_

finally must decide on one particular soluuon. Since both solutions are equally likely, the

decision to converge in one way or the other may be influenced by small diszu_

which may very well be the ones resuking from the initial _. At higher mrlmle,xz

intensities, this effect is practic, mlly unnoticeable (see Fig. 6.10). It should be no_ bmre

that during the course of this research the convergence speed oil the _ was

d,m.,natically by various meas,.u'es. This, however, changed the inbe_nt numeri_

disturbances such that earlier results with slower convergence could not be rec'r_ed

exactly with the enhanced version of the program.

Domain and grid influence. In this work it was also verified that the existence and

location of the transition front is not a grid or outflow-boundary effect. It was found that •

certain minimum number of radial grid points is needed to preatic: the front, but beyond :his

number, the front was predicted consistently at about the same location ('Fig. 6.11).

Discussion. It is worthwhile noting that the transition front can exist at locations

where the flow should be full)' developed. Even though there is disagreement over the

length of the turbulent entrance, it is clear that spatial transition at low TI occurs _ryczerthis

"entrance region". For the nominal, fully developed transition Re number predicted, the

laminar transition length is 1'72.5; the transition front for Re = 3460 develops only at

around X_r/D = 300, These findings suggest that at lob' Re numbers.and low TI the enu'ance

length is much longer than previously assumed.

The results of";.his study suggest that ;.he u-ansirion process in a finite pipe must be

described by two parameters, Re and xn/D, where xulD is the u'ansition front cross

section. Or, alternatively, the number of parameters can be reduced by adopting the notion

of an extemaJ boundary layer and working with a momentum thickness Reynolds number.

However, speaking of the transition is misleading because there is spatial u'ansition from a

Lagrange point of vie_, and there is ordinary transition from an Eulerian point of vie_'

ve_ far doyen the pipe which depends on the Re number only.
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Conclusions. For developing and fully developed pipe flow, qu_imtively and

quantitatively conv_ mmsidon predictions can be made by the Laum-Bmmhoru form ofd_

LRN k-¢ turbulence model, but the mmsidonal Re number nmge is too rim.row. Even

though the prediction for the fully developed flow is insensitive to the turbulence imcnsizy

at the inflow, the developing region is very sensitive to it with rqptrd to trtnsidoa. Since

the practical applications-which we are ultimately in.'rested in-will limit the simsdons to

mostly developing flows, we can say that for this model, Iransition in the developing

region can be u'iggered by the choice of boundary conditions for k and t.. This is very

desirable in light of the findings of Seume (1988) who concluded that transition in

oscillating flow is often determined by the state of the fluid before flow reversal This fluid

n_ght have been ou:side of the computational domain at flow reversal and might be entering

the domain during the computation.

6.4. On the Reproducibility of Transitional Stead) Flow Results

Most of the results shown in chapter 6.2 were produced with a 33"51 grid, the same

grid as used for the first computation of oscillating flow with a LRN turbulence model. It

was shown that the initial guess for k and ¢ does have an effect on the prediction of the

]ocation of the transition from (Fig, 6.9) lthad been found that a minimum number of

radial grid points is necessa_' to predict spatial transition and that, generally, more radial

grid points shift the transition front to lower x/D's (Figure 6.1 la). However, the exislence

of a transition front seems to be independent of grid and domain effects, as long as a

sufficient number o]"grid points are taken. A close look at Figure 6.11 shows thai these

conclusions were drawn at Re numbers of 3500 and 6000, both abov'e the predicted

"critical"Re number of 3,450.

Mattersaremore complicatedaz thecriticalRe number of 3450: The findingsof Figure

6.5 arequitereproduciblefortheexactlythe same conditions(i.e.initialguess,grid,Tl

ez:.).However, i_was found that,fora T] of 2_ and a finergridof 63 by 63 gridpoints,
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therelaminarizationof Figure6.5b could not be reproduced. Rather, the flow would

converge to a fully turbulent situation (Figure 6.12)! To test the sttbility of the coarse grid

solution (33 by 51, Fig. 6.5b), it was mm_mc, ed on • 63 by 63 grid and serv_ u the

initial guess for a continuation of this solution with the fine grid. The nmflts o(this

continuation are identical to the initial guess and the solution does not ch_ge (Pigure

6.13). Vice versa, the results originally obtained from the free grid solution (63 by 63)

were transformed to a coan_e_ grid (33 by 51) and used as initial guess for • otmtinuation of

this solution on the coarser grid. Similarly, the results were _ to _h" initial guess,

and no spatial relaminarization was predicted (Figure 6.14). This leads to the conclusion

that a continuation of • converged solution obtained with one grid will not change these

converged results independently of the grid used in the continuation. Additiomd

computations (no continuations) done with a 51"51 grid and a 33 by 63 grid did not predict

the relaminarization of Figure 6.5b (Figure 6.15).

Table 6.1: Grid influenceat "'critical"Reynolds number of3450

Re TI grid continuationof relaminarization Figure

othergrid predicted?

3,150 2t2 33*51 - yes 6.5b

3450 2_ 33"51 63*63 no 6.14

3450 2% 51"51 - no 6.15

3450 2% 33*63 no 6.15

3450 2_ 63*63 no 6.12

3450 2% 63*63 33"51 yes 6.13

For a TI of 0.5_, the 33 by 51 and 51 by 51 gridspredictfullylaminasflow,whereas

the 33 by 63 and 64 by 64 gridpredictfull),developed turbulentflow (Figure6.16).These
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Fig. 6.12" Predictions for Re = 3450 and TI = 2 _7c.Top. Relaminarization predicted wiIh

33 b3 51 grid. Bottom Full) turbulent flow prediction with 63 by 63 grid
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Fig. 6.13: Continuation of results of Fig. 6.12a with 63 by 63 grid.

Fig. 6.14: Continuation of results of Fig. 6.12b with 33 by 51 grid.
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Fig. 6.16: Predictions for Re = 3450 and 7"1= 0-_% for various grids. Top left: 33 by

51; top right: 51 by 51; bottom left: 33 by 63; bottom right: 64 b3 64.
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findings clearly show that there is a severe grid influence on the In_I/ctions at the "ori6m_

Re number of 3450.

Figure 6.17 shows anc_er influence: both velocity profdes are computed for the

exactly rm'ne conditions, except for the under-relaxation favors for k and _ It is evident

that the loci of L_ n'an$inon front are not identical.

+.

The next consideration was whether quxliu|tively similar n:suhs as der,_bed in

6.2 (e.g. at a somewhat different Re number) are predicted for a finer grid (64 by 64). A

number of computations determined that the new Recr.f_-_, it was found to be at Re -

2985 (Figure 6. l 8). However, at Re -" 2990, the flow underwent a "'normal" spatial

u"xnsition at around x/D=400, whereas at Re=2885 a n'ansition did not occur. A

rclaminxrization of the flov, as shown in Figure 6.8 for 3460 was not detected with this

grid.

Table 6.2: Predictions at around Re = 2985

i i , i i

Re TI grid fully developed flow prediction
l

2985 0.5% 33"51 laminar

2985 0.5_ 64*64 laminar

2985 0.5% 50"9} laminar

2990 0.5% 33"51 laminar

2990 0.5_ 64"64 turbulent

2995 0.5% 50"91 lamin_

The grid independence of the new cri6cal Re number Reef,64-64 was checked by again

changing the grid to a finer radial grid and a slightly coarser axial grid (50 by 91 grid
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points).Two computationsatRenumbersof 2985and2995did not predict transition for a

TI of 0.5_ (Figure 6.19).

At the new "critical" Re number, the influence ofT/was studied. While for • Ti of

0.5% the flow is laminar throughout, • TI of 10_ causes the flow to undergo trmssition to

turbulent without spatial relaminarization. This ruem_ that for the 64 by 64 grid the TI

boundary condition does influence Imufictions for the fully developed regime. This is a

clear conn_liction to the statement made earlier, i.e. that the TI does not influence the fully

developed regime (Figure 6.20).

It is interesting to see how a predicted solution changes if the TI is varied suddenly. For

this, the converged solution of Re z 2985, TI = 0.5_ (64 by 64 grid) was taken as initial

guess for a computation with TI set to 10%. The result of this computation can be seen in

Figures 6.21 and 6.22 as a function of the number of iterations. As one sees, the laminar

por6on of the flow is slowly pushed out as the iterations proceed, or--alternatively--with

6me, the flow in the pipe will become uarbulem when all of a sudden the low turbulence

intensity at the inflow is replaced by a high one. Alternatively, if the converged solution for

Re = 2985, T1 _ 10c_ is taken as an initial guess for a computation where TI - 0.5_, the

greatest part of the flow remains turbulent. The laminar portion of the flow near the

entrance of the pipe is extended only slightly due to the sudden decrease of the disturbance

level (Figures 6.21 and 6.23).

Conclusions:

1) In the wansifiona] Re number range the results of chapter 6 are

- qualitatively valid.

- quantitatively valid only for the very conditions for which they were established (e.g.

a 33 by 51 grid, specific under'relaxation factors, etc.).

2) Transition in the fully developed regime as well as spatial transition is influenced by

numerica] disturbances which in turn depend on grid, under-relaxation, initial guess for
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the vinous vmables, era..Thereforethereisno one typicalmmsition l_'fonnanc¢ of

the k-E turbulence model.

3) For lower and higherRe numbers, thepredictionsarevalidand unambiguous.

4) The performance oftheturbulencemode] reflectsthe phy_s insofaras two solu_on_

namely the huninar and the turbulent one. become equally likely around mmsidon

"compete" fordominance.

5) For about the first 100 diameters downstream from the pipe enmmce the oonmu:liction

with regard of the sensitivity of fully developed flow to TI does not have severe

consequences. This region is definidvel), affected by the TI as shown by all

computations.

6.5. Transition Predictions of Constant Acceleration Pipe Flow

The nextlogicalsteptocheck theperformance of thek<: model regardingn'ansidonm

turbulence is to apply it to this physical situation: A fluid in a long pipe is initially at rest. At

time = 0, the fluid is accelerated at a constant rate. As the Re number increases, the flow

will undergo transition at a Re number higher than in quasi-steady flov,'. This situation was

experimentall)' investigated by l.,efebre and White (1987). Comparison of the numerical

predictions with the experiment allows the turbulence model to be tested for acceleration in

a n-ansitional situation. Although this experiment has much in common with the accelerating

phase in oscillating flog,, there is one major difference: Here, the flow before transition is

absolutely undisturbed, and the disturbances develop only at wansition. In oscillating flow,

there is some level of residual turbulence before n'ansition which will most probably mglger

transition earlier than seen here. While we may expect to see some grid dependence for the

situation considered in this chapter, this dependence will be significantly smaller in

oscillating flow because of the residual turbulence.

The goal of this stud)' is to determine hog, well the turbulence model predictsnl_

to turbulence in accelerated pipe flog.
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Fig. 63 7: Predictions for Re = 3450 and 7"1= 0.5_ for various under.re/a.xation

factors a Top: ak = ac = 0.5; bottom: otk = oft = 0.7.
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Fig. 6.1_: Influence of the

Reynolds number on the

location of the transition front

for 0.$% 7"i at inflow:

normalized centerline velocity

vs. axial diztance.
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Lefebre and White (1957) used a 30 m long test section 0D = $ cm) with water as the

working fluid. The fl_v was accelerated from rest to 9 or l I m_ with al:c_Jmabom

between 1.85 and l 1.8 m/s 2' Their LDV and surface shear stress smumc tnmmmmmnts

$howed that the flow tlnderw_t _'ltn_tion throughout the test section al Inctic_y the tame

time. An acceleration pmluneter was defined as

I1 dum(t)

Ka = pure(t) 3 tit (6.21)

as well as a dimensionless time

t= 0 -2K (6.22)

In their experiments, the transitions times : reported are from 0.00105 to 0.0032. The

acceleration parameter at transition was nearly constant for the experiments at Ka,tr =

1.53x10 "8. However, during the acceleration, this parameter changes due to its definition.

Computations have been made for the same nonMimensional situation as in the

experiment. To translate the dimensionally given acceleration data of Lefebre and White, a

non-dimensional acceleration was defined as

2 p 2 R 3 dum(t)

Ka" = la2 dt (6.23)

Since dU/dt was constantforeach experiment,thisparameterremained constantduring

acceleration. Using the property data of water and the ID of the experiment, the non-

dimensional acceleration could be determined for different cases l, II and m. Case I is set

arbitrarily to a very low acceleration, case II corresponds to the lowest experimentally

investigated level and case Ill to the highest investigated level of acceleration. As will be
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Table 6.3: Resulgs of accelerated pipe flow coJ_ugations

i II

I ,, , n m

Ka* $.0e÷6 $.724e÷7 3.651 ¢÷8 ssme

Ks.it 2.Se-6 3.$8e-6 ,3.91e-6 I.$3e-8

ReDrtr 2.0e+4 4.0e+4 7.2e+4 _ lgiven

tr 4.0e. 3 7.0c-4 2.0e-4 1.05e-3 w 3.2e-3
i I i I

2.37 3.17 3.11 2.802
R ttr 0"5

, i

ReG.tr 1500 1680 1584 23200:1: IS_

seen later, the range of non-dimensional accelerations corresponds to the range found in

the different test cases for oscillating flow. The results of the computations are listed in

Table 6.3. In the computarlons, transition to turbulence was defined to happen at that time

step when the computed turbulent viscosity at any point in the domain became at least of the

order of the rno}ecu]ar viscosity'. The findings of this study are:

1.) The: turbulence model displays qualitatively the correct behavior: As the acceleration

increases, ReD,tr increases.

2.) Quantitatively, transition to turbulence is predicted about one order of magnitude too

carl), ( at too high values of the acceleration parameter and at too low times

corresponding to too low RED).

3.) The computational value of Ka,tr is varies only slightly for the different experiments; in

the experiment this value is also almost constant.

4.) The computed non-dimensional boundar)' layer thickness is close to the theoretical

value of 2.85 cited in Lefebre and White.

5.) The predicted transitional Re number based on the 99_ boundary layer thickness is

about one order of magnitude too low.

] Correlauon equat)on (4) given b)l._vebre and White (1987)
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Conclusions. While the turbulence model displays qualitatively the conzct results, it

predicts the actual onset of mmsidon aboutone order o_magnitude mo ady. _ the fact

that (i) becauseof'ex_ grid dependence,only qualitative results _ purr,,umdand (ii)

the mmsidon criterion g?plied is somewhat mbimtry, the performance of the twbulence

model is viewed as being satisfactory. However, this study is important for suggesting

possible future improvement in the chosen turbulence model.
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7. PREDICTIONS OF OSCILLATORY FLOW

°.

Since turbulence models are genend]y highly empirical, their l)n_ctiom r,hould be

compared with experiments when they art applied to • new ,;malion. A nove.J d_ is

given when the k-_ model is applied to oscillating flow, and oomplzison with the data of

the oscillating flow test facility of the University of Minnesota will be made. Bin acccuding

to which criteria will the agreement between the computed prediction and the =xpefin_nt be

judged ? Ideally, • direct comparison of the turbulent shear $ozsscs r,ecms to be desirable.

However, shear sn-esses have not been measured and might not be measured at all.

Experimentaldatadocumenting theIransidoninoscillatoryflow have been established

by Seurne (1988).This datacan be takentocheck themmsition predictionsof the

turbulencemodels qualitatively.A quantitativecomparison isnot possible,since(i)the

a'ansition dam itself an- valid only qualitatively (cf. $¢ume, 1988) and (ii) the on]),

measured fluctuationcomponent isu',and a comparison with thequantityk of the

turbuiencemodel involvesknowledge of how ison'opictheturbulenceis.From the dataof

Laufer (1954) it is evident that k _ 1.5 u-_ even for steady flow.

Measured velocityprofilesareavailableforone datapoint(termed SPRE inthiswork).

Quantitativeagreement of thepredictionswiththeexperimenm] datacan be checked. For

engine designconsiderationsitisimportanttoknow the localand average friction

coefficient,cf,which isproportionaltoOaf'dratthewall.Exact predictionof thevelocity

gradientnear thewallisdifficultbecause ofthe steepgradientsthere.Therefore,•

comparison between thecomputed cfand themeasured isdesirable.While inprinciplethe

experimentaldatarevealsthisinformation,due toexperimentalproblems ithas not been

possibleso fartomeasure cf.Computationally,cfdataisavailablewhenever velocity

profiles are computed.

Thus, the availabilit)of experimental data alloy, the following comparisons to-date:
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1) q',_llmdve prediction of mmsibon

2) quantitauve agreement of ve]oci_ pofiles not too closenear die wall.

Nomenclature: In the following, the nomcncbmre and comparisons will _m" to the

University of Mirmesom oscilla_g flow experirncnt. For • de_r_an d _ _periuncn_

set-up see Seumc (19gg). The the x-uis sm_ m the "drive mid" d the mbc and m_ls m the

"open end". Four out of the five cases inve_px_ he_ used • pipe length LID of 60.

Consequently, an axial location x/D of 44 is closer to u_ open end and an x/D of 16 is

closer to the chive end. The mean flow velocity will be of the type

urn(t) - Um.nmxsin(m0 (7.1)

The cycle time will be expressed in terms of crank angle. However, contrary to Seume

(1988), here we define crank angles between 0° and I$0 ° when the mean flow is along the

positive x-axis (i.e., coming from the drive end), while crank angles between 180 ° and

360° refer to riot agai_t the positive x-axis (i.e. coming from the open end). For the

comparison with predictions, the experimental data were converted to this frame of

reference.

7.1. SPRE Test Case:

Moderate Reynolds Number, Moderate Valensi Number

7.1. I. Prediction of Laminar Oscillating Flow

To demonstrate the capability of the numerical scheme _rlapted here, laminar oscillating

riot in a finite pipe was computed for Va = gO. The resulting velocity profiles in the axial

center of the tube were compared with analytical results from the Uchida analysis. As can

be seen from Fig. 7.1, the agreement is excellent. The computations were made with the
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same 23 by 23 grid employed later for the HRN k-t model. Also, 12 tin_ _eps per cycle

were used in connection with a Crank-Nicholson time integration scheme.

7.1.2.Predictionswith theHigh-Reynolds Number k-¢ Model

For preliminary studies, 3 cycles of oscillatory flow at Rean _ = I 1 700, Va = 80 and

L/D = 60 have been computed. Even though isknown thatthe _ form of thetuabulenoe

model (i)cannotpredicttransitionand (ii)isnot wellsuitedforpipeflows atnxxlerar_Re

numbers, a computation seemed worthwhile.First,thecomputationalscheme could be

checked with themuch simplerHRN formulation,and secondly,thiscomputation provides

a usefullimitingestimatewhich can serveasan initialguessformore detailedand exact

computations.

The gridused herewas a coarsegridof23 by 23 gridpointswhere thepointsinthe

radialdirectionwere denselypacked near thewall.Thus, thefirstinternalgridpointwas

placedeitherintheviscoussublayeror closetoitthroughoutthecycle.The gridwas fine

enough forthistest.The firsttwo cycleswere computed with 12 time stepsper cycle,the

thirdwith24.All computations were carriedout with a fixedCYank-Nicholson time

integrationscheme. The threecyclescome very closetotheperiodicsteadystateas can be

seen from theperformance of thefrictionfactor0::i$.7.2).A smallertime stepdoes not

have a dramaticimpact on theresuhsoftheprimitivevariablesu and v.This suggeststhat

the time steppin_procedureiswellchosen.A smallertime step,however, changes the

valuesof k,E,l.ttmore significantlythan u and v.

Since theI-]RNmodel does not have theabilitytopredicttransition,theturbulence

model must be s_tched off"by hand" duringthecomputations.In thisstud),our empirical

tr'ansitioncriterionwas simply toswitchoffthesolutionof thek and e equationwhenever

the Re number fellbelov,2300 and toswitchiton other_'/se.]:ora Re number of lessd'tan

2300. the laminar riot was anticipated, and the arrays of k, E:and P.t were set to zero. As
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can be seen in the Eraphs below, the sudden disappearance of I,tt at relative cycle _nes of

O. 0.5.1 etc. illustrate how unrealistic the u'ansition process is modeled this way.

It proved to be exmm',cly difficult to keep the scheme stable at the point where Rc = 0

(reversal of the mean flow direction). Even after many tr_ runs it remained smnewhat

unpredictable whether the computation would "survive" the next mean flow reversal. This

pointed out the _ for optimizing the inidaJ guesses from which • compmldon m • given

dine step was started and/or for another dine stepping pmcedm-c.

So far we used as initial guesses:

p(ij) .. 0

u(ij)= (l-fgp)Uold(i,j)+ fgp Um

v(ij)= 0

3
k(ij) = _" Tl:.um 2"_ for Re > 230O

I-

e(ij)= 0.05 k2/v

where fgp isa firstguess parameter which variescontinuouslybetween zero and one (l

forlargetime stepsand few time stepsper cycle,0 forsmall timestepsand many time

stepsper cycle).

Also,reliablecriteriafornonlinearconvergence _re determined.Define Omax •s the

maximum absoluteScaledvalueof theerrorinthemass conservationforany one control

volume. Then:

relax(u)*rclax(v)*relax(p)
Ornax <

ll*ml

dOmax < 0
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change in overall kinetic energy in domain

relax(k)*relax(E)*relax_ t)
<1%

was re,quired for at least 3 consecutive iterations.

The boundary conditions for the turbulent kinetic energy and the turbulem dladpm/on

rate were 6% turbulence intensity and _ = 0.05 in eq. (6.2). A velocity boundary ooNlil/on

of sinusoida]ly-varying slug flow imo the domain was assumed.

In the following, the results of the computations are presented. A compmson with the

measured data of Simon, Seume and Friedman (1989) is given later together with the

results of the low Reynolds number turbulence model.

Results. The results of the computations are shown in Figs. 7.2 and '7.5 Figure 7.2

shows the computed frictionfactoras a functionof thecrank angleand compares itwith the

frictionfactorcorrelationsforstead)'situationsattherespectiveRe number.

Discussion. Compaycd to the laminar flow computation hardlyany flow reversalis

predicted.This isgood news fortheboundary conditiono'eatrnentof theoud'low

boundary: Since atan outflow boundary ou_o,' isassumed, complete upwinding isRsed

theretoeliminatetheneed toknow theboundary conditionsthere.However, ifther_were

to be inflowatan outflow bounda.r),,informationabout theoutflow boundary would be

ncedc.da priori.And thisinformationisnot normally available.

As can be seenfrom Fig.7.5,thegrosscharacteristicsof the flow can be obttin_I from

a HRN computation.But thenearwallvelocityand thusthefrictionfactorpre_ctions do

not followtheexperimentaldatawell. This shouldnot be a surprise,because tbe validity

of the universallaw of thewail,on which the HRN relies,isvery questionableforthe

situation investigated.
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7. 1.3. Prediction with the Low Reynolds Number k-t Model

7.1.3.1. Development of Computations

For the SPRE test case (Remax = 11 700, Va = 80 and I.,/D = 60), a fluid flow

computation was made using the Lam Brernhorst form of the low Re number k-E

turbulence model. For the f'trst cycle computed with the LRN model, the computations at

each time step were started from the results obtained with the HRN model described above.

Except in the case where the number of time steps per cycle was 120, the computations of

the later cycles were started from the corresponding results of the previous cycle.

At fu'st, four additional cycles were computed, cycles # 4, 5, 6 and 7, each with 24

time steps per cycle. In cycle #7 the periodic steady state was reached and the results

practically did not change any more. As inflow boundary conditions a TI of 5% for the

kinetic energy and a _ of 1/(TI Re 0.875) [cf. eq. (6.20)] for the dissipation rate were used.

Later on, two more cycles (#8 and #9) were computed using measured velocib'

fluctuation data at the open end as the actual inflow boundary condition for k. This was

done to eliminate the uncenaint 3' associated with the assumed boundary condition in cycles

#4 to #7.

Finally, the grid independence of the results obtained was verified. 3/2 cycles were

computed with 120 time steps per cycle and a grid of 33 by 51 grid points, and 3/2 cycles

with 24 time steps and a larger grid of 64 by 91 grid points. The computation with 120 time

steps per cycle was started at 0 ° crank angle with the results from cycle #9. The subsequem

computations were started with the converged result of the previous time step. For the large

grid computation, the results of cycle #9 were transposed to the finer grid, and the

computations w.ere started from the corresponding results of cycle #9. As will be shown

later, the results of both tests were practically identical to cycle #9. The prediction of

transition was not altered by the use of a finer grid nor by the use of more time steps. This

is an imponam finding since in Chapter 6 some grid dependence of the transition prediction
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wasfound.Thedifferentbehaviorof the LRN model might be explained by the fact that in

oscillating flow, due to history effects, the flow before transition is never totally

undisturbed as assumed in the quasi-steady transition tests. From this we conclude that

quantitatively trustful results may be, in principle, obtainable for oscillating flow from the

turbulence model used.

7.1.3.2. A New Time Integration Scheme

For the computation of the fourth cycle, the same time integration scheme as for the

HRN model was used: a fixed Crank-Nicholson scheme. However, it was found that

convergence frequently was not reached after as man), as 200 nonlinear iterations. Then, if

a solution of the next step was tried (even though the previous step was not fully

converged), this solution nearly always diverged. Sufficient and dynamic under-relaxafon

and very many nonlinear iterations were the key to convergence at each time step.

As initial guess, the values of the previous cycle were used at each time step of the fifth

cycle. Initially it was assumed that only a few iterations would be necessary at each time

step to reach convergence. But this hope did not come true. Again, many iterations needed

to be done to prevent the subsequent time steps from diverging.

A thorough review of the time integration scheme used so far revealed the underlying

problem. In the LRN model computation 33"51 grid points were used, most of them

placed very close to the wall. As the numerical grid becomes finer and finer, the Crank-

Nicholson formulation may become physically unstable. The fine grid near the wall

practically assures that the the Crank-Nicholson scheme would become unstable unless

many more time steps are taken. One possible solution would be to use a scheme between

the fully implicit and the Crank-Nicholson scheme which is stable. This, however, would

imply that the time integration scheme for the total domain would be based on the most

unfavorable conditions for a Crank-Nicholson scheme in it, namely on the conditions near

the wall. Near the wall, the effect of mass inertia is relatively small, whereas in the center
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thateffectissignificant.Whereverinertiaplaysanimportantrole, time history effects

become important which are - in an always changing situation - better represented by the

Crank-Nicholson scheme. Therefore, it is not as important to have a Crank-Nicholson

scheme for the near wall region as it is for the center. This consideration bore out a time

integration scheme which picks a time integration factor for each control volume and for

each interface individually, based on the local conditions. For the situation under

investigation here, the time integration factor varied from almost 1.0 near the wall to around

0.95 in the center. Surely, for time integration factors that close to 1.0, a simple fully

implicit method would have provided almost the identical results. This scheme proved to be

stable at all times and was used for all cycles from #5 on.

7.1.3.3. Results

Comparison with measured U'rms data. Assuming isotropic turbulence, the

computed turbulent ldnetic energy can be transformed to the rms axial velocity fluctuations:

U'rms = ,r_ k (7.2)

Figure 7.3 shows a comparison of the measured velocity fluctuations with the

computations at an axial location of x/D = 44 and 3 radial locations, centerline, intermediate

and near the _all. The three computational curves plotted show the influence of the grid

size in time and space. The measured TI at the inflow is used in either case. However, even

with a flat T1 of 5/_ (cycle #7) the computed curve looks alike and is not shown. The

significant rise of U'rms at circa 230 ° coincides in the experiment and the computations

closer to the wall. Ho_'ever, the computations do not forecast a rise in the center. Also, the

predicted decrease in turbulent fluctuations occurs over a much longer period than

measured. It is believed that here the computation and the experiment show two completely

different mechanisms of transition and relaminarization. The sudden decrease of U'rms at

300: during the decelerating phase at a relatively high Re number indicates that the

measured fluctuations between 230" and 300 _ correspond to a "turbulent slug" being sucked
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in from the open end (cf.Seume, 1988).Without thisslug,the flow atthislocationwould

remain laminar-like.On theotherhand, thecomputationsdo not "see"thatslugand rather

describean ordinaryu'ansitiontoturbulenceata too low,but computationallyhigh enough

Rc number. This hypothesisissupportedby Chapter 6.4,where itwas found thatin

acceleratedflow the turbulencemodel predictstransitionattoo low Re numbers. The

computationaltransitionpredictsboundary layerinstabilitiesand hapl:)cnsfirstnearthe

walls.The high fluctuationsclosertothe wallwillbc u'ansportedtothecenter,but will

reach theccnterlineonly furtherdownstream Therefore,no riseof U'rmsisshown atthe

ccnterlincinthecomputations atthisaxiallocation.This explanationissupportedby the

computed fluctuations rising at about 90 °. Here the axial location is further downsn'eam of

the inflow and the numerically predicted fluctuations spread over the entire cross section. In

this case, experiment and computation "see" the same thing, i.e. ordinary transition to

turbulence. Again, the turbulence model predicts transition at a too low Re number, given

the rapid acceleration. The third rise in U'rmsjUSt after flow reversal at 180 ° is predicted

very faithfully by the computation. It is believed that this rise is due to fluid that has

become turbulent just after passing the probe location at x/D---44. Just after flow reversal,

the fluctuations have not died down yet and revisit the probe location.

In the following, we try to shed light on the question why the turbulence model does

not predict the experimentally observed turbulent slug, even though the c,orrr, ct inflow

boundary condition is used for the turbulent kinetic energy. Fig. 7.4a shows the measured

u'rms at the inflow, the theoretical mean flow for this flow situation and the ratio of the two

quantifies U'rms/Um(t) which is equivalent to the TI at the inflow. The U'rms values were

actually measured at the open end, but it is assumed that the inflow conditions are the same

for both ends of the tube. The given curves can be repeated for crank angeles 180 ° to 360 °.

Figure 7.4b shows axial profile of k at the centerline at different crank angles during the

period of inflow from the open end. The values of k at x/D--60 correspond to the measured

U'rms values of Fig.7.4a. It can be seen that the k values vary sharply between x/D=60 and

x,/D=58. At x,/D=50, virtually all information aboul the inflo_ boundary condition is lost
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To the right of the centerline, the veloci_' is plotted vs the radius linearly; to the left, it is

plotted against the logarithma'c wall distance. The individual profiles are vertical!y shifted
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or dissipated.We suspectthatinflow boundaryconditionfor Eprovidesunrealisticallyhigh

values.Highvaluesof Eleadto arapiddissipationof k just aftertheinflow andimply that

in thecomputationsno"turbulentslugs"couldtravelanysignificantdistancedownstream

from theinlet.Thissuggeststhatfurtherwork isrequiredto realisticallyspecifyg atthe

inflow andthat_(Re)of eq. (6.20)shouldbemodified.

Comparison with measured velocit)' profiles. Figure 7.5 shows a comparison

of the computed and measured velocity profiles at an axial location x/D = 4.4. It can be seen

that the HRN and the LRN models give similar results in the center of the tube, but differ

considerably towards the wall. In general, the HRN model predicts too high velocities near

the wal]. The results of three LRN computations are shown:

(i) no experimental TI, 24 time steps per cycle, 33 by 51 grid

(ii) experimental TI, 120 time steps per cycle, 33 by 51 grid

(iii) experimental TI, 24 time steps per cycle, 64 by 91 grid

The three LRN computations are practically indistinguishable. This verifies the grid

independence and shows that the measured TI does not influence the predictions at this

axial location. Table 7.1 tries to evaluate and to classify the results shown in Fig.7.5.

Table 7.1: Evaluation of Figure 7.5

Agreement with experiment

Crank Angle HRN LRN

30° satisf, good

60 _ fair satisf.

fair satisf.

1?20° fair satisf.

150 ° satisf, good

18& good good

Crank Angle

Agreement with experiment

HRN LRN

210 _ satisf, good

240 _ fair satisf.

270 _ fair satisf.

300 _ poor fair

330: fair fair

36ff good good

Scale: good - satisfactory- fair- poor
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Fromthisevaluation,anumberof questions arise:

1) Why is there good agreement for the LRN case at 150 ° and only fair at 330" ?

2) Why is there sarlsfactory agreement for the LRN case at 120 ° and fair at 300 ° ?

3) Why is there only little improvement at 60 °, 90 °, 300 ° and 330 ° from the HRN to the

LRN model ?

The following discussion shall assess these questions. From Fig. 7.5 and from Table

7.1 it is evident that the results do not show symmetric deviations from the experimental

results, i.e. the deviations at 1500 differ significantly from the ones at 330 ° etc. For the data

pair 60°/240 ° the prMicted data Js generally "too turbu]em". However, this g'cnd is more

pronounced at 60 °. The centerline velocities are underpredicted at 60 ° and on target at 240 °.

N'ear the wall, the absolute value of the velocity is overpredicted. An explanation for the

deviation at 60 ° could be that the strong acceleration keeps the flow longer laminar than the

turbulence mode] can predict. This is in line with the test of the model for constant

acceleration flows (see Chapter 6.4). From Fig. 7.3 it becomes clear that the better

agreement at 2405 comes from separated turbulent eddies being sucked in from the nozzle at

the beginning of the second half of the cycle. The action of these eddies would increase the

turbulent kinetic energy and counter the effect of the acceleration. Therefore, the measured

data at 240 ° are "more turbulent" than those at 60 ° . This explanation also holds for the data

pair 90c/'270 :. Hov,ever, it appears that at 90: there is aver) s_'ong overprediction of the

absolute values of the velocities between y/D=Txl0 -3 and 10 1, whereas at 270 ° the

prediction follows the experiment much better. Yet, at 270 ° all experimental data lie below

or on the predicted curve. This indicates that the mass balance was not satisfied in the

experiment. If the experimental data of 2705 is shifted to give the same mass flow as in the

computation, a similar trend as in the case of 240 ° can be seen. For 120 ° and 150 ° crank

angle, similar deviation patterns are found. First, all experimental data are above or on the

predJcled curve, again indicating experimental differences in maintaining the mass flow

rate. Near the wall, the prediction is right on target, whereas in the center, the predicted

data is too lov, +.The data at 300 ° and on 3305 shows an overprediction of the absolute value
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of thevelocitynearthewall, followedby an underprediction towards the center and the

correct values at the centerline. The experimental data clearly looks laminar-like. Based on

the measured boundary conditions for U'rms and on Fig. 7.3 that is due to the action of the

nozzle before the flow enters the tube. There, fluid from the quiescent outside is sucked in

and accelerated. The flow into the tube is relatively little disturbed and may well develop

like a laminar flow init!ally. As seen in Chapter 6.2, at an axial distance of 16 diameters

from the inlet, the flow will be laminar-like at moderate Re numbers unless the TI is very

high. In the equivalent cases of 120 ° and 150% the axial distance from the inflow is x/D =

44. By then, a spatial transition is very likely to have happened which could explain the

different behavior between 120 ° and 300 c' or 150 ° and 330 °.

It is remarkable that the near wall velocities are generally well predicted. It is the near

wall velocities which determine the computed cf value. Therefore the cf predictions can be

regarded with confidence.

Given the remaining uncertainties of the experimental results, the general agreement of

the LRN predictions with the experiment is considered to be good.

Law of the wall. As can be seen in Fig. 7.6, the predictions support the hypothesis

that the universal lag' of the wall is not a good representation for the velocity profile near

the wall or even throughout the cross section. This does not come as a surprise since the

universal lag of the wall has already been shown for stead)' flows to be not applicable at

low Re numbers.

However, it can be seen that, except at flog reversal, there exists a laminar sublayer up

to a 3,'+ of about 7. Beyond this value, a logarithmic relationship between u+ and y+ may be

formed, but the slopes are neither identical to the universal value nor constant at all.

Tu and Ramaprian (1981) argue for pulsatile flog that the velocity does not scale with

the wall shear stress at the same instance of time. Since the wall shear stress and the mean

velocity have a phase difference could one sc',de the velocity with the shear stress of the
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corresponding phase angle? To answer this question conclusively for oscillating flow, a

phase relationship between u and 'to should be established, similarly like in laminar flow.

Friction coefficient. The friction coefficient for fully developed flow derived from

the turbulent steady state correlation does not agree well for the accelerated part of the cycle

with the computed friction factor, which predicts lower values (Fig.7.7). The agreement

get rather close in the decelerated phase. The predictions of the HRN and LRN models are

significantly different. Given the superiority of the velocity predictions obtained v,'ith the

HRN model, it can be claimed that the HRN model does not give realistic values for cf.

Entrance length effects. Entrance length effects are important for about one third of

the length of the tube during most of the cycle (Fig. 7.8). The fact that cf,x initially

decreases below the fully developed limit can be explained by the laminar-like flow

development downstream of the inlet. This effect is relatively pronounced because of the

low (experimentally determined) TI. It seems appropriate that a locally averaged friction

factor for this case takes accoun_ for the entrance length effects.

Other quantities. Fig. 7.9 shows the computed pressure distribution throughout the

cycle. Figures 7.10, to 7.12 shov, the time variation of the turbulent kinetic energy, the

dissipation rate and the turbulent viscosity at x/D = 44. Figure 7.13 is a vector plot of the

the velocity. Figures 7.14, 7.15 and 7.16 show the variation of k, _ and lax at different

crank angles.
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Fig. 7.7: Comparison of

friction coefficient prediction

at the ou_ow cross section.
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Fig. 7.9: Predicted axial

pressure distribution. Remax =

] ] 700, Va -- 80, LID = 60.
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7.2. Other Test Cases Computed

There were four more test cases computed, case e, d, m, p. The lettering of the cases

corresponds to the names of Seume's experiments. According to Seume's findings, case e

lies in the "fully turbulent" region, a region where the maximum Re number is high enough

to cause instabilities to significantly perturb the flow, but where the frequency is too high to

al]ov¢ the fluctuations to die down as the flow reverses directions and accelerates. In this

case, the ability of the turbulence mode] to predict transition is secondary. Case p is the

corresponding case on the laminar side. According to the experiments by Seurne 0988)

and Ohmi et al. (1982) and Iguchi et al. (1983), the flow in case p always remains

Table 7.2: Test cases investigated

Case Rerna,x Va Str

SPRE 1.17e4 80 0.0274

I./D

6O

AR

1.22

Mama.x

0.015

d 1.32e5 81.2 0.0025 6O 13.6 0.17

Ka,max"

9.36e5

1.07e7

e 1.87e5 230.3 0.0049 60 6.8 0.23 4.31e7

m 2.39e4 230.3 0.0386 68.5 0.8 0.03 5.50e6

60231.1 0.38.43e3 0.010.0548P 1.95e6

laminar. Here, the ability of the turbulence model to accurately represent transition is the

primary factor for accurate predictions. Case d and m are in the transitional regime where

the flow is laminar-like during parts of the cycle, and turbulent-like during the rest. In

particular, with case d we can test the influence of increasing the Re number from the

SPRE case while keeping the frequency constant; with case m we can test the influence of

increasing the Valency number while maintaining the order of magnitude of Re number.

The maximum non-dimensional acceleration occurring in each of the test cases falls

approximately in the range of accelerations investigated in Chapter 6.4.
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Comparison with experiment. No measured velocity profiles are available for

either of these cases. However, since the profiles in the SPRE case can be predicted fairly

well, we presume that also in the cases considered here the predicted profiles will be

realistic provided that we can model n-ansition correctly. For case p the laminar computation

can give some basis for comparing velocity profiles. Available from experiment are the rms

fluctuations at different locations for cases e, d and p. Even though case m is cited in

Seumc (1988), the data files could not be found an), more. Figure 7.17 shows a qualitative

comparison of the measured rms velocity fluctuations with the computed data at x/D=16

(near the drive end). While the agreement is a very close between experiment and

computation in cases e and d, it is decidedly worse for case p.

In case e and d, the computed fluctuations in the center show a more structured, wave-

like beha;,ior than their experimental counterparts. In case e, the experimental near wall

profile shows a clear phase lag as compared to the computations. As discussed in Chapter

3.3.6, the relaxation time of turbulence seems to play a role in this case. The

computational fluctuations are in phase v,,ith the mean flow field because the present

turbulence model requires an immediate turbulent stress response to a large scale shear. The

measured phase lag in the near _all fluctuations will most likely lead to a phase lag in the

friction coefficient which is larger than predicted. In case d, where the frequency is only

about one third of that in case e, no such phase lag can be detected in the measurements. In

case p, the assumption of a specific value of TI at the inflow influences the result

significantly. For a short pipe this outcome can be expected in light of the findings of

Chapter 6. Based on the measured TI in the SPRE case, it is believed that the 0.5ek TI for

case p is closer to the experimental conditions. The computations show a clearer up-and-

down trend than the experiment. Also, disregarding the pitfalls of a quantitative comparison

for a moment, the level of the fluctuations predicted seems to be higher than seen

experimentally. However, especially for the case of 0.5% TI, the level of fluctuations

remains vet) 1o4 throughout, even near the wall.
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Cross stream transport of turbulence.The effect of cross stream transport of

turbulence is manifested by a phase shift between the near wall fluctuations and the

centerline fluctuations and can be seen from Figure 7.18. The three cases shown (e, m and

p) have the same frequency but different Remax. The computed shift is greatest for case p

and small for e. In case e, practically during the entire cycle time, turbulence is generated

near the wall and transported toward the center. In case p, fluctuations will be u'ansponed

towards the center during the decelerating phase, and toward the wall in the accelerating

phase. Case m lies in between those two extremes.

Friction coefficient for full)' developed flow. Figure 7.19 shows the

computed friction coefficients and compared them with the laminar and turbulent Steady

state correlations, h becomes clear that for cases d and e the turbulent steady state friction

coefficient is an excellent representation, whereas the results for case m are similar like for

the SPRE case where the cf values depart markedly from the stead)' state correlation in the

accelerating phase. For case p, the steady state correlation is vet), bad. This, however, has

long been known from analyses, experiments and computations of laminar oscillator)'

flows. This finding supports the Shemer's (1985) hypothesis that a similarity parameter

like the Va number which describes the influence of the unsteadiness of the flow on the

various flow parameters like cf should be built using some kind of effective viscosity

instead of the molecular value. It is the effective viscosity that connects the motions of the

boundary layer with the core in the tube. If the effective viscosity is high throughout the

cycle (case d and e), then the influence of the unsteadiness on the flow parameters is small,

even though the ordinarily used Va number suggests a strong influence. Note that for cases

SPRE and m the average effective viscosity is higher in the decelerating phase where the

stead), state correlation agrees much better. Fig 7.19d shows, in addition to the laminar and

turbulent stead), state correlations, the results of a computation of case p in which the

turbulence model was turned off completely. It can be seen that a variation in the

specification of TI influences the near-outflo_ cf predictions only marginally. During the

accelerating phase, the "turbulent" computations follow exactly the "laminar" values. In the
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deceleratingphase,the"turbulent"computedfrictioncoefficientsareclearlyhigherthanthe

corresponding"laminar" values.

Entrance length effects. Effects of the hydrodynamical entrance length are

negligible for cases e, d and m (Fig.7.20). Given the proximity of the Remax numbers of

cases SPRE and m, it is striking that the enu'ance length effects are quite different.

However, the TI used in case m is a fiat 5% throughout the cycle which is much higher

than what is used in the SPRE case. As known from Chapter 6, a higher TI causes the flow

to develop sooner as a turbulent flow which explains this apparent discrepancy. Case p

with 5% TI looks much like case SPRE. However, with 0.5% TI, the behavior at 150 °

crank angle deviates considerably from a stead)' state en_-ance length behavior. Generally,

for case p, entrance length effects do play a role for the given pipe length.

Other quantities. Figures 7.21 to 7.36 show 3-D plots for the axial velocity,

turbulent kinetic energy, turbulent dissipation rate and turbulent viscosity for the various

cases. It ma', _be noted here that for case p the velocity distributions obtained with the

turbulence model switched on look vet). much like the laminar profiles.
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Fig. 7.19a: Comparison of

computed fully developed

friction coefficient with steady

state correlations. Data point

e." Remax= l.87xlO 5, Va=230,

UD=60.
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Fig. 7.19c: Comparison of

computed fully developed

friction coefficient: with

stead)' state correlations. Data

point m: Remax=2.39x104,

Va =230, LID=683.
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Fig. 7.20a: Ratio of local to

fully developed friction

coefficient at various crank

angles. Data point e:

Remax=1.87x105, Va=230,

IdD=60.

Fig. 7.20b: Ratio of local to

fully developed friction

coefficient at various crank

angles. Data point d: Renuax =

1.32x10 -_, Va=8], UD=60.
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Fig. 7.20c: Ratio of local to

fully developed friction

coefficient at various crank

angles. Data point m :

Remax=2.39x10 't, Va=230,

L/D=68.5.
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Fig. 7.20e: Ratio of local to

fully developed friction

coefficient at various crank

angles. Data point p:

Reenax=8.43x103, Va--231,

LID=60, I"1=0.5%.
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7.3. Conclusions

1.) Starting from the results of the computations with the HRN turbulence model, the

periodic steady state for case SPRE was successfully computed with the LRN

turbulence model. In this model, no empirical transition criterion whatsoever was used.

2.) The predictions obtained are grid independent.

3.) Transition triggered by turbulent slugs (as seen in the SPRE case and described by

Seume, 1988) is not predicted at the axial location investigated. In the SPRE case,

ordinary' transition is faithfully predicted but at somewhat too low Re numbers. The

transition predictions for the high Remax cases e and d compare very favorably with the

experiment. The always lamiar case p is computed very laminar-like.

4.) Based on the transition performance obse_,ed here, it is not necessary to take measures

to broaden the predicted transitional Re number range (cf. Chapter 6.3.).

4.) For case SPRE, the computed velocity profiles at x/D _. 4.4 agree rather well with the

experimental data and show clear improvements over the HRN computation.

5.) The universal law of the wall does not hold for oscillating flow. However, a viscous

sublayer follov, ing u+=y + does exist at least up to y+=7.

6.) The friction coefficient predictions show that for the two cases where Remax was

greater than 105, the steady state correlation is appropriate, at least up to Va=230. For

the two cases w'here 10a < Remax < 105, the stead,,' state correlation can be used for the

decelerating periods of the cycle. Here, the friction coefficients of the accelerating parts

of the cycle have yet to be correlated. Below Remax = 10a the steady state correlation

definitely does not hold throughout the cycle, at least for Va=200.
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'7.) Entrance length effects are not important for the high Remax cases, but are significant

for all other cases.

8.) To judge the impact of the unsteadiness on the flow parameters, an effective Va number

should be used, Vaeff-- ¢0R2/vcff.

9.) In contrast to the findings of Rodi and Scheurer (1986) for the fiat plate boundary layer,

here the LRN k-t model does not seem to have particular problems with adverse

pressure-gradients and decelerations. Rather, the problems come with strong

acceleration.

10.) The shortcomings of the LRN computations are threefold:

• In accelerated flow, the turbulence model predicts _'ansition at too low Re numbers.

• The inflow boundary condition for c does not reflect reality and does not allow

turbulent slugs to exist long enough compared with the experiment.

. The observed phase shift between the mean flow and the fluctuations at high Re and

Va numbers is not predicted by the turbulence model.
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PART III: HEAT TRANSFER AND IRREVERSIBILITY ANALYSIS

8. HEAT TRANSFER IN STEADY PIPE FLOW

In order to validate the part of the computer program responsible for the heat transfer

problem, laminar and turbulent stead)' pipe flow was computed for constant heat flux and

constant wall temperature boundary conditions. The criteria for the validation were the

following questions:

1.) Ho_ well does the code predict Nusseh numbers for fully developed flow?

2.) Is the thermal entrance region realistically predicted?

The Nusselt number correlations used to compare the predictions against weret:

constant heat ra',e constant wall temperature

laminar flow Nu = 4.364 Nu = 3.658

turbulent flow Nu = 0.22 Re 0.8 Pr0.5 Nu = 0.021 Re 0-8 Pr 0.5

Figure 8.1 shows the computed local Nusselt numbers for a thermally and

hydrodynamicall) developing pipe flo_ (I_/D=150). The laminar computations were

obtained with a 21 by 25 coarse grid, the turbulent computations with a 33 by 51 grid. The

computed Nusselt numbers for the laminar case approach the theoretical values exactl). The

computed values for the turbulent case are a little too high (136 vs. 121 for constant wall

temperature, 138 vs. 126 for constant heat flux) but are within an error margin small

enough to be acceptable. Also. the constant heat rate problem yields a higher Nu number

IW. M . Ka.vs and M.E Crab, ford in Con',ecti_e Heat and Mass Transfer, MacGra_.-Hill Book
Co., Nca York. 1980.
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than the constant wall temperature problem. Yet, the fact that both numbers are over-

predicted seems to indicate that the turbulence model employed slightly over-predicts the

wall heat transfer. The entrance region is resolved realistically. For the laminar flow, the

computed Nu number decreases monotonically to the asymptotic limit of fully developed

flow. In case of turbulent flow, the predicted local Nu number decreases at fl.,'st below the

fully developed flow limit because of a short laminar-like development of the flow. As

soon as the flow undergoes a spatial transition to turbulence (cf. Fig. 5.2 for the local

frictions coefficient), the Nu number increases to the full)' developed flow value.

Figure 8.2 shows three-dimensional views of the temperature development in the pipe

for two different dimensionless temperatures. In Fig. 8.2a the non-dimensional temperature

is simpl)' T/To, whereas in Fig 8.2b it is (Tw - T)/(Tw- Tbulk). Those plots are supposed

to be a reference against which one can compare the development of the temperarure

profiles in oscillating flow.

For the 1.5" pipe of the Universit) of Minnesota oscillating flow experiment and air.

the following relationship betv, een the Ec number and the Remax number can be

established:

Ec=5.2.10 -13-Re _

where ,50 is defined as ('r,_ - Tin)/l'm. Here, the representative temperature difference

(,sT)ref entering the Ecken number is taken as T_ - To, and To = Tin. Clearly, when ,50

approaches a very small value, the Ecken number becomes large and viscous effects play a

significant role in the energy equation considered. In the given stud),, the temperature at the

inflow was constant at a value of 300, and in the constant wall temperature case, T_. was

set to 360. This choice ensured that viscous heating was negligible. This is in line with

Seume and Simon (1986) who stated that viscous heating does not pla) a role in Stifling

engine heat exchangers. Despite that. the viscous dissipation function was always included

in the calculations.
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9. PREDICTIONS OF HEAT TRANSFER IN

TURBULENT OSCILLATING FLOW

Given the assumptions outl.ined in Chapter 2, the properties axe all considered as being

constant in this study. Therefore the heat transfer problem is decoupled from the fluid flow

problem and linear. Having obtained realistic solutions for the fluid flow problem, we can

then expect realistic solutions for the heat transfer problem, too. The computations shown

in this chapter will possess all weaknesses of the turbulence model discussed above. Those

shortcomings will not be discussed here.

For a practical application, the calculation of Nusseh numbers for the test cases

considered is probably the most important task. The most precious question to be answered

by this study is whether the steady state Nu number correlations are applicable in case of

turbulent flow. Also of interest is the question whether entrance length effects play a more

significant role in heat n'ansfer than in the fluid flow part. We will restrict our attention to a

Dirichlet boundaz',:' condition at the wall and inflow, and Neumann boundary condition at

the centerline and outflow. The alternative case of a Neumarm boundary condition at the

wall could easily be obtained, too. However, in case of turbulent flow and Pr=l, the

difference ha boundar:,' conditions leads to an only insignificant difference of resulting Nu

numbers. To maintain similarit) with the University of Minnesota oscillating flow test rig.

the temperature at the inflow cross section was assumed to be the same for inflow from the

drive and from the open end.

9.1. Nusselt Number Calculations near the Outflow

Figure 9.] sho_s the computed Nu numbers near the outflow cross section. As is the

case for the friction coefficients, cases SPRE and m as well as cases e and d correspond to

each other. Case p stands out alone. In all cases, the magnitude of the Nu number
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throughoutthecycleismuchclosertotheturbulentsteadystatecorrelationthanfor the

laminarcorrelation.

CasesSPREandm,whereRemaxismoderate,displayadefinitephaseshift of about

the same magnitude (=20 ° crank angle). In the accelerating phase, the Nu number is less

then the turbulent steady state correlation. This is expected since the accelerated flow is

"more laminar-like", and less cross stream eddy transport takes place. It may be noted here

that the corresponding friction factors at 15 ° and 30 ° crank angle are larger than the

turbulent stead), state correlation, whereas the corresponding Nu number are smaller. For

the friction factor this can be explained by the velocity gradients alone, which are very steep

near the wall because of the acceleration. This is so even if there is no eddy transport. The

Nu number not influenced by this velocity gradient, but determined by the eddy transport.

On the other hand, the Nu number in the deceleration phase is enhanced by the increased

eddy transport.

The Nu numbers for cases e and d folloa ver), nicely the turbulent steady state

correlation. Apparently, the eddy activity here is high enough to lock the boundary layer to

the core of the flow, similarl) as in stead) flow.

The Nu number pattern for case p shows the flow like laminar oscillating flow during

the acceleration phase and deviates from that towards a more turbulent Nu number in the

decelerating phase. The peak of the Nu numbers is offset by circa +80 ° compared to the

steady correlation peak.

9.2. Local Nusselt Numbers

Figure 9.2 shows the local Nusselt numbers as computed. For cases e and d, where

Remax is relatively high, the thermal enn3' length is short and the Nusseh number of the

thermally and hydrodynamically fully developed flow gives a good representation for the

entire tube. For cases SPRE ancl m, the therm_ entr) length affects a significant portion of

the tube. In the SPRE case. where the experimentall> detennined, IoN' TI boundary
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conditionisused,theinitially flow develops laminar-like, and the Nu number is less than

the fully developed value for about one third of the pipe length. In case m, n fiat 5% TI at

the inflow was assumed which causes the hydredynamical entry length to be shorter than

in the SPRE case. Here, about one fourth of the length is permanently a thermal entry

length. The latter two cases show a similar behavior of the local Nu number at 30 _ crank

angle: the local Nu number here is significantly higher than the fully developed Nu number

practically throughout the tube. This can be explained as a history effect of the flow. What

is the near outflow cross section during one half of the cycle is the near inflow cross-

section during the other. Near the inflow, the respective inflow boundary conditions are

strongly felt, whereas away from it the flow is more determined by local conditions.

Shortly before flow reversal the level of turbulence is very lov,' near the entrance. Then,

after flow reversal, the level of turbulence at the former near-entrance cross section builds

up only slowly. In contrast, in the center of the tube or at the near-outflow cross section

the level of turbulence is still relatively high before flow reversal. Therefore, just after flow

reversal, the level of turbulence there is higher than at the nov,' outflow cross-section.

Consequently, the Nu number is lowest at the outflow cross section. In case m, due to the

high frequency, this histoD effect is still slightly present at 60 ° crank angle. Case p (5% TI)

is different from the previous two cases in that this history effect affects most of the cycle.

Only the curves from 120 ° on are practically fi'ee of this effect. Hence, the fully developed

Nu number value is not a good spatial mean.

9.3. Temperature Solutions

Underlying the Nusseh number results above are temperature solutions. In Figures 9.3

to 9.5 the temperature solutions are shown in two different ways: The temperature is

normalized simply by division by a reference temperature To. For the SPRE case, a

normaliz_ion like in steady pipe flow is used, 0 = (T_- T)/(T_- Tbulk). The shown plots

look similar like plots for stead>, state, but the normalization brakes down for flow reversal.

Only cases SPRE. e and p are shown.

183



9.4. Conclusions

1.) For Remax numbers above 105, the turbulent steady state Nu number correlation

approximates well the computed instantaneous Nu number for the fully developed

flow, at least up to Va=230.

2.) For 10a < Remax < 105, the full)' developed instantaneous Nu number can be related to

the steady state correlation by a simple pha._e lag relation (to be developed).

3.) Below Remax -- 10 a, the instantaneous full)' developed Nu number differs in phase and

magnitude from the turbulent stead)' state correlation.

4.) Thermal ent-D' length effects are negligible for Remax numbers above 105.

5.) Below a Remax of 105, the thermal entr3' length becomes appreciable and histoD' effects

begin to play a role.
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Fig. 9.1a: Comparison of

computed full)' developed Nu

number with steady state

correlations. Data point

SPRE: Retnax=1.17x]O 4,

Va=80, UD=60.

Fig. 9.1b: Comparison of

computed fully developed Nu

number with steady state

correlations. Data point m:

Rernax=2.39x104, Va=230,

LIDs68.5.
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Fig. 9.1c: Comparison of

computed fully developed Nu

number with steady state

correlations. Data point ¢:

Remax=1.87xlO 5, Va=230,

DD=60.

Fig. 9.1d: Comparison of

computed fully developed Nu

number with steady state

correlations. Data point d:

Remax=1.32x105, Va=81,

DD=60
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Fig. 9.1e: Comparison of

computed fully developed Nu

number with steady state

correlations. Data point p:

Remax=8.43xlO 3, Va=231,

L/D=60, T!=5.0%.
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Fig. 9.1/: Comparison of

computed fully developed Nu

number with steady state

correlations. Data point p:

Ren, ax=8.43xlO 3, Va=232,

DD=60, T1=0.5%.
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Fig. 9.2a: Ratio of local to

fully developed Nu number at

various crank angles• Data

point S P R E : Rentaz =

1.17xlO _, Va=80, UD=60.

Fig. 9.2b: Ratio of local to

fully developed Nu number at

various crank angles. Data

point m : Remax=2.39x10 "_,

Va=230, L/D=68.5.
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Fig. 9.2c: Ratio of local to

fully developed Nu number at

various crank angles. Data

point e: Remaz=l.$7x105,

Va---230, idD=60.

Fig, 9.2d: Ratio of local to

fully developed Nu number at

various crank angles. Data

point d: Remax=].32x105,

Va=8l, UD=60.
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Fig. 9.2e: Ratio of local to

fully developed Nu number at

various crank angles. Data

point p: Rernaz=8.43x103,

Va=231, L/D=60, T!=5.0%.
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Fig. 9.2f: Ratio of local to

fully developed Nu number at

various crank angles. Data

point p: Remax=8.43x103,

Va=233, _D=60, 7"1=0.5%.
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10. ENTROPY GENERATION IN STEADY PIPE FLOW

10.1. Derivation of the Entropy Generation Term

As outlined in Chapter 2, the benefit of the differentia] equation for the entropy lies in

its en_'opy generation term. In heat exchanger design, techniques to reduce friction and to

enhance heat transfer are usually in conflict with each other. Applying the second law of

thermodynamics puts both irreversible processes on the same physical scale and allows to

properly evaluate their impact on the overall performance.

The differentia/equation for entropy can be written as ) (Bejan, 1982)

Ds
-div(_- ) + Sg'enP-if= (10.1)

the energy equation is

p _- = -div( _ ) + -_-- + I.t_
(10.2)

and the continuity equation is

Dp
+ p div(_) = 0 (10.3)

The fh-st term on the fight hand side ofeq. (10.1) can be rewritten as

D..

1 _ the folio_ !n_. the quantil,, _ denotes the substantial derivative.
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(10.4)

Replacingdiv(_ ) with theenerg3'equation,theequationfor theentropybecomes

Ds = _. grad(T)+ p,_ Dt
P "_- T 2 T _¢_ + (10.5)

Using Gibbs' equation T ds = dh - (l/p)dp and Fourier's law, eq. (10.5) transforms to

k I.t

Ss'_n = _-: [grad(T)] 2 + y¢_
(10.6)

For turbulent flov,', the ensemble averaged equations are

p____=ID__ div( )+ Sg'c.-p div(u s) (10.7)

p = -div( _ ) + + lab + p_:- p div( u' h' ) + div( : p' )
(10.8)

It is

div( u_ s )= s' div( _ )+ : • grad(s') (10.9)

and similarly for h' and p'. For constant density flows, the first term on the right hand

side drops out.

Combining equations (10.7) and (10.8), using (10.9) and applying Gibbs' equation for

the fluctuation terms, the entropy generation term for turbulent flow takes the final form
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(10.10)

Theindividualtermsin eq.(10.10)reflecttheirreversibilitiesdueto hemconduction,

mean flow across a finite pressure gradient and fluctuations across finite pressure

gradients. All terms of eq. (10.10) are positive which is in accordance with the second law.

It is noteworthy that the heat transfer term in eq. (10.10) is governed by the molecular, not

the effective conductivity.

Using the non-dimensionaJ variables as introduced in Chapter 2 and defining

T=--_

To (10.11)

p R2

E= 2 £

_ref um._a_ (10.12)

Sge, , = To D 2 S_en
2

Idref Urn'max (10.13)

the non-dimensional equation for the entropy generation rate becomes:

=_ 4 /grad(T)] 2 + 4 TI_+ 4 _ _.
S_e" Pr Ec (T_ - T,_)

(10.14)

where the factor 4 on the left hand side is due to the use of D as length scale for the rate

of generated entropy. Here, the case Ec = 0 represents a singularity, and it is not clear a

prior-), how small Ec must be in order to justify an omission of the two last terms.
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To estimatehowmuchentropyisgeneratedin anumericalcontrolvolume,the

generatedentropyof eq.(10.13)will bemultipliedwith thedimensionlessvolumeof the

controlvolume,

• _oo , +,,

5gen.n._ _ Ssea
AVcv

0.5 R2L (10.15)

Nole: The entropy production depends on the absolute temperature at which the

irreversible processes occur. Therefore, all results shown are only valid for the absolute

temperatures picked, or, more exactly, for the ratio of the absolute temperatures.

10.2. Results for Steady Turbulent Flow

Figure 10.1 a shows the total non-dimensional entropy generation rate for a steady

turbulent pipe flow at Re = 50 000, assuming Tm = 300 and Tw = 360 (like in the heat

transfer problem). Most of the entropy production occurs near the wall and near the

entrance cross sect!on where the gradients are especially steep.

Figure 10. l b shows the ratio of thermal entropy production (f'u'st term on RHS of eq.

(10.10) ) to total entropy generation. Figure 10. Ic shows the ratio of frictional entropy

production to total entropy production, and Figure 10. l d shows the ratio of turbulent

entropy production to total entropy generation. Near the wall, where the most entropy is

produced, the thermal production is dominant. Frictional production is negligible.

Turbulent entropy production is significant towards the center of the tube and near the

entrance. However. of all three contributors, thermal entropy production is largest.
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Fig. 10.1." Entropy production rate for Re=50000, Pr=l.O, Tw/To=l.2, T_r,=To.

Top left." ,Vormah:ed total entropy generation rate," top right: thermal fraction of z<,t:Ti

generated entropy, bottom left:frictional fraction, bottom right: turbulent fractior_.
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11. ENTROPY GENERATION IN TURBULENT OSCILLATING

FLOW

For the different test cases, it is of interest for the designer of a heat exchanger to have

the following two questions answered:

1.) Where does the significant portion of the irreversibility take place?

2.) Which process contributes most to the irreversibilities, heat transfer, friction of the mean

flow or turbulent dissipation?

As outlined in Chapter 10, the non-dimensional entropy depends on the absolute

temperature chosen to non-dimensionalize it. Since there is no compelling reason to choose

a particular temperature, its selection is somewhat arbitrary. This is a well known problem

in exergy analyses, too. However, from exergy considerations it can be argued that the

ambient temperature (if any clear defined T._ exists) is the preferred choice. Hence, the

results shown here are only exemplary for one typical case where To=T, and TwTI'==1.2.

Results and Discussion. Figures l 1.1 to 11.3 show the total normalized entropy

generation in the domain at different crank angels for cases e, SPRE and p. In each case.

nearly all of the entropy is generated ver) close to the wall. The peak generation is very

close to the entrance cross section.

Figures 11.4 to 11.6 show the portion of entropy generation due to heax conduction for

cases e, SPRE and p. It becomes clear that, overall, conduction is the main contributor to

irreversibilities. This can be explained by the fact that the thermal irreversibilities depend on

the gradient of T, whose radial component is zero at the centerline. The turbulent

dissipation, in contrast, influences irreversibilities directly and is nonzero at the centerline.

Irreversibility contributions of turbulent dissipation do become more significant towards

the center and in the inflow region (Figs ] 1.7 to 11.9) Especi',:dl) in case e, turbulent
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dissipation seems to be the main contributor(in %) for much of the domain. However, since

also in this case by far the most overall entropy production takes place in a very thin layer

near the wall, thermal entropy production is the largest contributor to irreversibilities.

Conclusions. No generally valid conclusions can be drawn. For the cases considered

here, thermal entropy production was largest. However, this constellation can change if the

temperatures involved change, or if the Remax number is increased significantly. The above

posed questions must be answered individually fi'om case to case. This points at the need

for reliable computer programs with whom each case can be simulated separately.
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PART IV: CLOSURE

12. OVERALL ASSESSMENT

12.1. Summary and Major Conclusions

1.) A literature review shows that presently no detailed numerical study into fully

developed and developing turbulent oscillating flow and heat transfer is available.

2.) A control-volume based numerical algorithm suitable for solving the governing

equations exactly and efficiently is developed.

3.) The k-e model in the Lam-Bremhorst form is identified as a suitable model for

oscillating flow predictions. It is shown that the model has the capability to predict

transition to turbulence in quasi-steady and accelerated pipe flow at leas_ qualitatively

correct.

4.) The oscillating flow predictions generally compare well with the experiment. This

validates the choice of the k-e model for this study.

5.) With regard of the oscillating flow predictions, the major flaws of the k-r model are:

• The r inflo_ boundary condition is questionable.

• Transition in accelerated pipe flow is predicted too earl)'.

• The present edd2,-viscosit,', concept implies an inf'mite stress-response time to shear,

6) A modification to the r-equations is proposed in order to capture better the

accelerarior't/deceleration effects on transition and relaminarization.

7.) A complex vaJued turbulence viscosity is proposed.
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8.)Theuniversallaw of thewalldoesnothold for oscillating flow. A viscous sublayer

following u+=y + does exist at least up to a y'* of 7.

9.) For Remax numbers above 105, the steady state correlations for the fully developed

friction coefficient and Nu number apply well. For lower Remax numbers, the

departures become larger with decreasing Remax and increasing Va.

10.) To estimate the influence of unsteadiness, an effective Valensi number should be used,

built upon the effective, not the laminar, viscosity.

l 1 .) An irreversibility analysis demonstrates that for the conditions chosen, heat conduction

is the biggest contributor towards en_opy production.

12.2. Contributions of This Research

To the best knowledge of the author of this work. the new and unique features

contained herein are:

1.) The development of the locally adaptive time integration scheme for a nonlinear

convection-diffusion situation.

2.) The application and documentation of the predictions of the Lam-Bremhorst form k-c

model for quasi-steady and accelerated full) developed and developing pipe flov..

3.) The oscillator3 flo_' and heat transfer predictions.

4.) The proposed modification to the c-equation.
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12.3. Suggestions for Further Research

Fow major points emerged for further investigation:

1.) The inflow boundary condition for t should be theoretically or, ff possible,

experimentally investigated in order to enable the prediction of "traveling turbulent

slugs" downstream of the inflow.

2.) The concept of a complex valued turbulent viscosity should be pursued to capture the

phase lag of the small scale motion with respect to the large scale motion in strongly

unsteady flows.

3.) The proposed modification to the t-equation should be tested and scaled in order to

yield better predictions for accelerated/decelerated flows.

4.) The data generated herein should be reduced to yield correlations for the friction factor

and Nu number which are needed in Stifling engine performance codes.
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APPENDIX

A. Vector Quantities in Axisymmetric Coordinates

Note: In this appendix, the following conventions apply:

Tensors arc given in the form:

rrr r,p rx]

I_ _ _1
kxr x_ xxJ

Stress tensor:

.p + ]_112-_-- 0

o ,_-_]
J

k r_o 4_L_-+_j o

o I
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Kinematic vector quantities in axisvmmerd¢ C:oordinates:

Fay a_--x'_

grad(_) lO= Xr ° I

L m_l

I

m

2 B---L 0
ar

0 2 v-
1"

au ax o
_+_

iml

Ov +___

0

ax

ax v

_,grad(_) = av +
ax v _-J

au 1 a au
F "_x (1_a-_ ) + ¥ _ (__-) 3
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__+_-__ 7

Viscous dissipation function _ and generation term G for turbulent kinetic cncrzv:

• =G= 2 /--I +2 +2 + +
t_xJ t 3r) _xj
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C. Grid Generation

The grid generation can be divided into the two pans of dividing the radial and axial

directions into small stretches from which the control volumes will be built. The width of a

control volume will be denoted as YV(J) for the radial direction and XU(1) for the axial

direction. There are Ml grid lines dividing the radial direction and Ll for the axial

direction. J is the numbering of the grid points for the radial direction, I for the axial

direction. The axial grid lines were equidistant in all computations.

The objectives for the radial grid were:

• very dense near the wall

• neighboring control volumes should not vary too much in width

• sufficient number of grid points also in the center region should be maintained

Let us define 7. radial grid coordinate

and Z1 be an intermediate location where we switch from one grid form to another.

There are many approaches thinkable. However, in axisymmetric coordinates, the

following customary approach does not work well:

YV(J) I aX + b X < X 1

- l,czd+e Z >ZI

The reason for this is that in axisymmetric coordinates, not enough grid lines can be

placed in the region near the wall--which should be resolved finely--since the quanrit', X get

close to 1.0. even with a high exponent d On the contrary, near the centerline, X
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approacheszero,andtheresultingvariationin thewidthof neighboringcontrol volumes is

tremendous.

A remedy is to specify the following grid:

Y'V(J)_ { otZ Z<ZI
F(X)- YL ae bx+c X>X1

Which gives a linear grid between the centerline and Xl and an exponential grid

between Xl and the wall. The parameters b and Xl must be specified, the others are fixed.

At the wall, X = 1 _. F(X) = 1. Therefore:

c=l -ae b

At Xl, we require that the grid function is continuous and differentiable. Thus

a "

eb + ebX_ [IYzI " 11

and a = a b e_Zl )

For b ---, - _, _ very dense near the wall;

for b _ + _ = very dense near XI.

This form was used for the grid generation of the LRN computations. For the

computations with the 33 by 51 grid, XI = 0.4 and b = - 5 were customarily used. For

the computations with the 35 by 64 grid, Xl = 0.2 and b = - 6 were used. Figure C.I

shows a typically used grid.
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Figure C.I : A typical grid, 64 by 91 grid points. Note that the radial dimension is

stretched by a factor of 120.
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